Effective models for nearly ideal Dirac semimetals
Feng Tang, Xiangang Wan
Effective models for nearly ideal Dirac semimetals
Topological materials (TMs) have gained intensive attention due to their novel behaviors compared with topologically trivial materials. Among various TMs, Dirac semimetal (DSM) has been studied extensively. Although several DSMs have been proposed and verified experimentally, the suitable DSM for realistic applications is still lacking. Thus finding ideal DSMs and providing detailed analyses to them are of both fundamental and technological importance. Here, we sort out 8 (nearly) ideal DSMs from thousands of topological semimetals in Nature 566(7745), 486 (2019). We show the concrete positions of the Dirac points in the Brillouin zone for these materials and clarify the symmetryprotection mechanism for these Dirac points as well as their low-energy effective models. Our results provide a useful starting point for future study such as topological phase transition under strain and transport study based on these effective models. These DSMs with high mobilities are expected to be applied in fabrication of functional electronic devices.
Dirac semimetal / symmetry / effective model
[1] |
K. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45(6), 494 (1980)
CrossRef
ADS
Google scholar
|
[2] |
D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall conductance in a twodimensional periodic potential, Phys. Rev. Lett. 49(6), 405 (1982)
CrossRef
ADS
Google scholar
|
[3] |
M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
CrossRef
ADS
Google scholar
|
[4] |
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
CrossRef
ADS
Google scholar
|
[5] |
Y. Ando and L. Fu, Topological crystalline insulators and topological superconductors: From concepts to materials, Annu. Rev. Condens. Matter Phys. 6(1), 361 (2015)
CrossRef
ADS
Google scholar
|
[6] |
N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and Dirac semimetals in three-dimensional solids, Rev. Mod. Phys. 90(1), 015001 (2018)
CrossRef
ADS
Google scholar
|
[7] |
T. O. Wehling, A. M. Black-Schaffer, and A. V. Balatsky, Dirac materials, Adv. Phys. 63(1), 1 (2014)
CrossRef
ADS
Google scholar
|
[8] |
S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, Dirac semimetal in three dimensions, Phys. Rev. Lett. 108(14), 140405 (2012)
CrossRef
ADS
Google scholar
|
[9] |
Z. Wang, Y. Sun, X.Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, and Z. Fang, Dirac semimetal and topological phase transitions in A3Bi (A= Na, K, Rb), Phys. Rev. B 85(19), 195320 (2012)
CrossRef
ADS
Google scholar
|
[10] |
Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Threedimensional Dirac semimetal and quantum transport in Cd3As2, Phys. Rev. B 88(12), 125427 (2013)
CrossRef
ADS
Google scholar
|
[11] |
Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, Discovery of a threedimensional topological Dirac semimetal, Na3Bi, Science 343(6173), 864 (2014)
CrossRef
ADS
Google scholar
|
[12] |
Z. K. Liu, J. Jiang, B. Zhou , Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin6 , T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, A stable three-dimensional topological Dirac semimetal Cd3As2, Nat. Mater. 13, 677C681 (2014)
CrossRef
ADS
Google scholar
|
[13] |
B. J. Yang and N. Nagaosa, Classification of stable threedimensional Dirac semimetals with nontrivial topology, Nat. Commun. 5(1), 4898 (2014)
CrossRef
ADS
Google scholar
|
[14] |
M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Chiral tunnelling and the Klein paradox in graphene, Nat. Phys. 2(9), 620 (2006)
CrossRef
ADS
Google scholar
|
[15] |
M. Yan, H. Huang, K. Zhang, E. Wang, W. Yao, K. Deng, G. Wan, H. Zhang, M. Arita, H. Yang, Z. Sun, H. Yao, Y. Wu, S. Fan, W. Duan, and S. Zhou, Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2, Nat. Commun. 8(1), 257 (2017)
CrossRef
ADS
Google scholar
|
[16] |
H. J. Noh, J. Jeong, E. J. Cho, K. Kim, B. I. Min, and B. G. Park, Experimental realization of type-II Dirac fermions in a PdTe2 superconductor, Phys. Rev. Lett. 119(1), 016401 (2017)
CrossRef
ADS
Google scholar
|
[17] |
F. Fei, X. Bo, R. Wang, B. Wu, J. Jiang, D. Fu, M. Gao, H. Zheng, Y. Chen, X. Wang, H. Bu, F. Song, X. Wan, B. Wang, and G. Wang, Nontrivial Berry phase and type- II Dirac transport in the layered material PdTe2, Phys. Rev. B 96(4), 041201 (2017)
CrossRef
ADS
Google scholar
|
[18] |
Q. D. Gibson, L. M. Schoop, L. Muechler, L. S. Xie, M. Hirschberger, N. P. Ong, R. Car, and R. J. Cava, Threedimensional Dirac semimetals: Design principles and predictions of new materials, Phys. Rev. B 91(20), 205128 (2015)
CrossRef
ADS
Google scholar
|
[19] |
Q. S. Wu, C. Piveteau, Z. Song, and O. V. Yazyev, MgTa2N3: A reference Dirac semimetal, Phys. Rev. B 98, 081115(R) (2018)
CrossRef
ADS
Google scholar
|
[20] |
W. D. Cao, P. Z. Tang, S.-C. Zhang, W. H. Duan, and A. Rubio, Stable Dirac semimetal in the allotropes of group-IV elements, Phys. Rev. B 93, 241117(R) (2016)
CrossRef
ADS
Google scholar
|
[21] |
X. Zhang, Q. Liu, Q. Xu, X. Dai, and A. Zunger, Topological insulators versus topological Dirac semimetals in honeycomb compounds, J. Am. Chem. Soc. 140(42), 13687 (2018)
CrossRef
ADS
Google scholar
|
[22] |
X. L. Sheng, Z. Wang, R. Yu, H. Weng, Z. Fang, and X. Dai, Topological insulator to Dirac semimetal transition driven by sign change of spin–orbit coupling in thallium nitride, Phys. Rev. B 90(24), 245308 (2014)
CrossRef
ADS
Google scholar
|
[23] |
Y. Du, B. Wan, D. Wang, L. Sheng, C.G. Duan, and X. Wan, Dirac and Weyl semimetal in XY Bi (X= Ba, Eu; Y= Cu, Ag and Au), Sci. Rep. 5(1), 14423 (2015)
CrossRef
ADS
Google scholar
|
[24] |
Y. P. Du, F. Tang, D. Wang, L. Sheng, E. J. Kan, C.- G. Duan, S. Y. Savrasov, and X. G. Wan, CaTe: A new topological node-line and Dirac semimetal, npj Quant. Mater. 2, 3 (2017)
CrossRef
ADS
Google scholar
|
[25] |
R. Chen, H. C. Po, J. B. Neaton, and A. Vishwanath, Topological materials discovery using electron filling constraints, Nat. Phys. 14(1), 55 (2018)
CrossRef
ADS
Google scholar
|
[26] |
T. Zhang, Y. Jiang, Z. Song, H. Huang, Y. He, Z. Fang, H. Weng, and C. Fang, Catalogue of topological electronic materials, Nature 566(7745), 475 (2019)
CrossRef
ADS
Google scholar
|
[27] |
M. G. Vergniory, L. Elcoro, C. Felser, N. Regnault, B. A. Bernevig, and Z. Wang, A complete catalogue of high-quality topological materials, Nature 566(7745), 480 (2019)
CrossRef
ADS
Google scholar
|
[28] |
F. Tang, H. C. Po, A. Vishwanath, and X. Wan, Comprehensive search for topological materials using symmetry indicators, Nature 566(7745), 486 (2019)
CrossRef
ADS
Google scholar
|
[29] |
J. Xiong, S. K. Kushwaha, T. Liang, J. W. Krizan, M. Hirschberger, W. Wang, R. J. Cava, and N. P. Ong, Evidence for the chiral anomaly in the Dirac semimetal Na3Bi, Science 350(6259), 413 (2015)
CrossRef
ADS
Google scholar
|
[30] |
M. Neupane, S. Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T. R. Chang, H. T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2, Nat. Commun. 5(1), 3786 (2014)
CrossRef
ADS
Google scholar
|
[31] |
H. C. Po, A. Vishwanath, and H. Watanabe, Symmetrybased indicators of band topology in the 230 space groups, Nat. Commun. 8(1), 50 (2017)
CrossRef
ADS
Google scholar
|
[32] |
F. Tang, H. C. Po, A. Vishwanath, and X. Wan, Efficient topological materials discovery using symmetry indicators, Nat. Phys. 15, 470 (2019)
CrossRef
ADS
Google scholar
|
[33] |
O. Muller and R. Roy, Synthesis and crystal chemistry of some new complex palladium oxides, Adv. Chem. Ser. 98, 28 (1971)
CrossRef
ADS
Google scholar
|
[34] |
P. Norby, R. E. Dinnebier, and A. N. Fitch, Decomposition of silver carbonate: the crystal structure of two high-temperature modifications of Ag2CO3, Inorg. Chem. 41(14), 3628 (2002)
CrossRef
ADS
Google scholar
|
[35] |
C. J. Bradley and A. P. Cracknell, The Mathematical Theory of Symmetry in Solids, Oxford: Claredon Press, 1972
|
[36] |
O. Graudejus and B. G. Mueller, Ag2+ in trigonalbipyramidaler Umgebung: Neue Fluoride mit zweiwertigem Silber: Ag M(II)3 M(IV)3 F20 (M(II) = Cd, Ca, Hg; M(IV) = Zr, Hf), Zeitschrift fuer Anorganische und Allgemeine Chemie (1950) (DE) 622, 1549–1556 (1996)
CrossRef
ADS
Google scholar
|
[37] |
T. Yamada, V. L. Deringer, R. Dronskowski, and H. Yamane, Synthesis, crystal structure, chemical bonding, and physical properties of the ternary Na/Mg stannide, Na2MgSn, Inorg. Chem. 51(8), 4810 (2012)
CrossRef
ADS
Google scholar
|
[38] |
B. Peng, C. M. Yue, H. Zhang, Z. Fang, and H. M. Weng, Predicting Dirac semimetals based on sodium ternary compounds, npj Comput. Mater. 4, 68 (2018)
CrossRef
ADS
Google scholar
|
[39] |
H. Zentgraf, K. Claes, and R. Hoppe, Oxide eines neuen Formeltyps: Zur Kenntnis von K3Ni2O4 und K3Pt2O4, Zeitschrift fuer Anorganische und Allgemeine Chemie (1950) (DE) 462, 92–105 (1980)
CrossRef
ADS
Google scholar
|
[40] |
Z. Nong, J. Zhu, X. Yang, Y. Cao, Z. Lai, and Y. Liu, The mechanical, thermodynamic and electronic properties of Al3Nb with DO22 structure: A first-principles study, Physica B 407(17), 3555 (2012)
CrossRef
ADS
Google scholar
|
[41] |
H. He, C. Tyson, and S. Bobev, Eight-coordinated arsenic in the Zintl phases RbCd4As3 and RbZn4As3: Synthesis and structural characterization, Inorg. Chem. 50(17), 8375 (2011)
CrossRef
ADS
Google scholar
|
[42] |
R. W. Henning and J. D. Corbett, Cs8Ga11, a new isolated cluster in a binary gallium compound: A family of valence analogues A8Tr11X: A= Cs, Rb; Tr= Ga, In, Tl; X= Cl, Br, I, Inorg. Chem. 36(26), 6045 (1997)
CrossRef
ADS
Google scholar
|
[43] |
P. Blaha, K. Schwarz, G. Madsen, D. Kvasicka, and J. Luitz, WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, 2001
|
[44] |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865(1996)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |