Effective models for nearly ideal Dirac semimetals

Feng Tang, Xiangang Wan

PDF(3214 KB)
PDF(3214 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (4) : 43603. DOI: 10.1007/s11467-019-0902-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Effective models for nearly ideal Dirac semimetals

Author information +
History +

Abstract

Topological materials (TMs) have gained intensive attention due to their novel behaviors compared with topologically trivial materials. Among various TMs, Dirac semimetal (DSM) has been studied extensively. Although several DSMs have been proposed and verified experimentally, the suitable DSM for realistic applications is still lacking. Thus finding ideal DSMs and providing detailed analyses to them are of both fundamental and technological importance. Here, we sort out 8 (nearly) ideal DSMs from thousands of topological semimetals in Nature 566(7745), 486 (2019). We show the concrete positions of the Dirac points in the Brillouin zone for these materials and clarify the symmetryprotection mechanism for these Dirac points as well as their low-energy effective models. Our results provide a useful starting point for future study such as topological phase transition under strain and transport study based on these effective models. These DSMs with high mobilities are expected to be applied in fabrication of functional electronic devices.

Keywords

Dirac semimetal / symmetry / effective model

Cite this article

Download citation ▾
Feng Tang, Xiangang Wan. Effective models for nearly ideal Dirac semimetals. Front. Phys., 2019, 14(4): 43603 https://doi.org/10.1007/s11467-019-0902-7

References

[1]
K. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45(6), 494 (1980)
CrossRef ADS Google scholar
[2]
D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall conductance in a twodimensional periodic potential, Phys. Rev. Lett. 49(6), 405 (1982)
CrossRef ADS Google scholar
[3]
M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
CrossRef ADS Google scholar
[4]
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
CrossRef ADS Google scholar
[5]
Y. Ando and L. Fu, Topological crystalline insulators and topological superconductors: From concepts to materials, Annu. Rev. Condens. Matter Phys. 6(1), 361 (2015)
CrossRef ADS Google scholar
[6]
N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and Dirac semimetals in three-dimensional solids, Rev. Mod. Phys. 90(1), 015001 (2018)
CrossRef ADS Google scholar
[7]
T. O. Wehling, A. M. Black-Schaffer, and A. V. Balatsky, Dirac materials, Adv. Phys. 63(1), 1 (2014)
CrossRef ADS Google scholar
[8]
S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, Dirac semimetal in three dimensions, Phys. Rev. Lett. 108(14), 140405 (2012)
CrossRef ADS Google scholar
[9]
Z. Wang, Y. Sun, X.Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, and Z. Fang, Dirac semimetal and topological phase transitions in A3Bi (A= Na, K, Rb), Phys. Rev. B 85(19), 195320 (2012)
CrossRef ADS Google scholar
[10]
Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Threedimensional Dirac semimetal and quantum transport in Cd3As2, Phys. Rev. B 88(12), 125427 (2013)
CrossRef ADS Google scholar
[11]
Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, Discovery of a threedimensional topological Dirac semimetal, Na3Bi, Science 343(6173), 864 (2014)
CrossRef ADS Google scholar
[12]
Z. K. Liu, J. Jiang, B. Zhou , Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin6 , T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, A stable three-dimensional topological Dirac semimetal Cd3As2, Nat. Mater. 13, 677C681 (2014)
CrossRef ADS Google scholar
[13]
B. J. Yang and N. Nagaosa, Classification of stable threedimensional Dirac semimetals with nontrivial topology, Nat. Commun. 5(1), 4898 (2014)
CrossRef ADS Google scholar
[14]
M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Chiral tunnelling and the Klein paradox in graphene, Nat. Phys. 2(9), 620 (2006)
CrossRef ADS Google scholar
[15]
M. Yan, H. Huang, K. Zhang, E. Wang, W. Yao, K. Deng, G. Wan, H. Zhang, M. Arita, H. Yang, Z. Sun, H. Yao, Y. Wu, S. Fan, W. Duan, and S. Zhou, Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2, Nat. Commun. 8(1), 257 (2017)
CrossRef ADS Google scholar
[16]
H. J. Noh, J. Jeong, E. J. Cho, K. Kim, B. I. Min, and B. G. Park, Experimental realization of type-II Dirac fermions in a PdTe2 superconductor, Phys. Rev. Lett. 119(1), 016401 (2017)
CrossRef ADS Google scholar
[17]
F. Fei, X. Bo, R. Wang, B. Wu, J. Jiang, D. Fu, M. Gao, H. Zheng, Y. Chen, X. Wang, H. Bu, F. Song, X. Wan, B. Wang, and G. Wang, Nontrivial Berry phase and type- II Dirac transport in the layered material PdTe2, Phys. Rev. B 96(4), 041201 (2017)
CrossRef ADS Google scholar
[18]
Q. D. Gibson, L. M. Schoop, L. Muechler, L. S. Xie, M. Hirschberger, N. P. Ong, R. Car, and R. J. Cava, Threedimensional Dirac semimetals: Design principles and predictions of new materials, Phys. Rev. B 91(20), 205128 (2015)
CrossRef ADS Google scholar
[19]
Q. S. Wu, C. Piveteau, Z. Song, and O. V. Yazyev, MgTa2N3: A reference Dirac semimetal, Phys. Rev. B 98, 081115(R) (2018)
CrossRef ADS Google scholar
[20]
W. D. Cao, P. Z. Tang, S.-C. Zhang, W. H. Duan, and A. Rubio, Stable Dirac semimetal in the allotropes of group-IV elements, Phys. Rev. B 93, 241117(R) (2016)
CrossRef ADS Google scholar
[21]
X. Zhang, Q. Liu, Q. Xu, X. Dai, and A. Zunger, Topological insulators versus topological Dirac semimetals in honeycomb compounds, J. Am. Chem. Soc. 140(42), 13687 (2018)
CrossRef ADS Google scholar
[22]
X. L. Sheng, Z. Wang, R. Yu, H. Weng, Z. Fang, and X. Dai, Topological insulator to Dirac semimetal transition driven by sign change of spin–orbit coupling in thallium nitride, Phys. Rev. B 90(24), 245308 (2014)
CrossRef ADS Google scholar
[23]
Y. Du, B. Wan, D. Wang, L. Sheng, C.G. Duan, and X. Wan, Dirac and Weyl semimetal in XY Bi (X= Ba, Eu; Y= Cu, Ag and Au), Sci. Rep. 5(1), 14423 (2015)
CrossRef ADS Google scholar
[24]
Y. P. Du, F. Tang, D. Wang, L. Sheng, E. J. Kan, C.- G. Duan, S. Y. Savrasov, and X. G. Wan, CaTe: A new topological node-line and Dirac semimetal, npj Quant. Mater. 2, 3 (2017)
CrossRef ADS Google scholar
[25]
R. Chen, H. C. Po, J. B. Neaton, and A. Vishwanath, Topological materials discovery using electron filling constraints, Nat. Phys. 14(1), 55 (2018)
CrossRef ADS Google scholar
[26]
T. Zhang, Y. Jiang, Z. Song, H. Huang, Y. He, Z. Fang, H. Weng, and C. Fang, Catalogue of topological electronic materials, Nature 566(7745), 475 (2019)
CrossRef ADS Google scholar
[27]
M. G. Vergniory, L. Elcoro, C. Felser, N. Regnault, B. A. Bernevig, and Z. Wang, A complete catalogue of high-quality topological materials, Nature 566(7745), 480 (2019)
CrossRef ADS Google scholar
[28]
F. Tang, H. C. Po, A. Vishwanath, and X. Wan, Comprehensive search for topological materials using symmetry indicators, Nature 566(7745), 486 (2019)
CrossRef ADS Google scholar
[29]
J. Xiong, S. K. Kushwaha, T. Liang, J. W. Krizan, M. Hirschberger, W. Wang, R. J. Cava, and N. P. Ong, Evidence for the chiral anomaly in the Dirac semimetal Na3Bi, Science 350(6259), 413 (2015)
CrossRef ADS Google scholar
[30]
M. Neupane, S. Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T. R. Chang, H. T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2, Nat. Commun. 5(1), 3786 (2014)
CrossRef ADS Google scholar
[31]
H. C. Po, A. Vishwanath, and H. Watanabe, Symmetrybased indicators of band topology in the 230 space groups, Nat. Commun. 8(1), 50 (2017)
CrossRef ADS Google scholar
[32]
F. Tang, H. C. Po, A. Vishwanath, and X. Wan, Efficient topological materials discovery using symmetry indicators, Nat. Phys. 15, 470 (2019)
CrossRef ADS Google scholar
[33]
O. Muller and R. Roy, Synthesis and crystal chemistry of some new complex palladium oxides, Adv. Chem. Ser. 98, 28 (1971)
CrossRef ADS Google scholar
[34]
P. Norby, R. E. Dinnebier, and A. N. Fitch, Decomposition of silver carbonate: the crystal structure of two high-temperature modifications of Ag2CO3, Inorg. Chem. 41(14), 3628 (2002)
CrossRef ADS Google scholar
[35]
C. J. Bradley and A. P. Cracknell, The Mathematical Theory of Symmetry in Solids, Oxford: Claredon Press, 1972
[36]
O. Graudejus and B. G. Mueller, Ag2+ in trigonalbipyramidaler Umgebung: Neue Fluoride mit zweiwertigem Silber: Ag M(II)3 M(IV)3 F20 (M(II) = Cd, Ca, Hg; M(IV) = Zr, Hf), Zeitschrift fuer Anorganische und Allgemeine Chemie (1950) (DE) 622, 1549–1556 (1996)
CrossRef ADS Google scholar
[37]
T. Yamada, V. L. Deringer, R. Dronskowski, and H. Yamane, Synthesis, crystal structure, chemical bonding, and physical properties of the ternary Na/Mg stannide, Na2MgSn, Inorg. Chem. 51(8), 4810 (2012)
CrossRef ADS Google scholar
[38]
B. Peng, C. M. Yue, H. Zhang, Z. Fang, and H. M. Weng, Predicting Dirac semimetals based on sodium ternary compounds, npj Comput. Mater. 4, 68 (2018)
CrossRef ADS Google scholar
[39]
H. Zentgraf, K. Claes, and R. Hoppe, Oxide eines neuen Formeltyps: Zur Kenntnis von K3Ni2O4 und K3Pt2O4, Zeitschrift fuer Anorganische und Allgemeine Chemie (1950) (DE) 462, 92–105 (1980)
CrossRef ADS Google scholar
[40]
Z. Nong, J. Zhu, X. Yang, Y. Cao, Z. Lai, and Y. Liu, The mechanical, thermodynamic and electronic properties of Al3Nb with DO22 structure: A first-principles study, Physica B 407(17), 3555 (2012)
CrossRef ADS Google scholar
[41]
H. He, C. Tyson, and S. Bobev, Eight-coordinated arsenic in the Zintl phases RbCd4As3 and RbZn4As3: Synthesis and structural characterization, Inorg. Chem. 50(17), 8375 (2011)
CrossRef ADS Google scholar
[42]
R. W. Henning and J. D. Corbett, Cs8Ga11, a new isolated cluster in a binary gallium compound: A family of valence analogues A8Tr11X: A= Cs, Rb; Tr= Ga, In, Tl; X= Cl, Br, I, Inorg. Chem. 36(26), 6045 (1997)
CrossRef ADS Google scholar
[43]
P. Blaha, K. Schwarz, G. Madsen, D. Kvasicka, and J. Luitz, WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, 2001
[44]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865(1996)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(3214 KB)

Accesses

Citations

Detail

Sections
Recommended

/