β-PtO2: Phononic, thermodynamic, and elastic properties derived from first-principles calculations
Quan Chen (陈泉), Wei Li (李伟), Yong Yang (杨勇)
β-PtO2: Phononic, thermodynamic, and elastic properties derived from first-principles calculations
β-PtO2 is a useful transition metal dioxide, but its fundamental thermodynamic and elastic properties remain unexplored. Using first-principles calculations, we systematically studied the structure, phonon, thermodynamic and elastic properties of β-PtO2. The lattice dynamics and structural stability of β-PtO2 under pressure were studied using the phonon spectra and vibrational density of states. The vibrational frequencies of the optical modes of β-PtO2 increase with elevating pressure; this result is comparable with the available experimental data. Then, the heat capacities and their pressure responses were determined based on the phonon calculations. The pressure dependence of the Debye temperature was studied, and the results were compared in two distinct aspects. The elastic moduli of β-PtO2 were estimated through the Voigt–Reuss–Hill approximation. The bulk modulus of β-PtO2 increases linearly with pressure, but the shear modulus is nearly independent of pressure. Our study revealed that the elastic stiffness coefficients C44, C55 and C66 play a primary role in the slow variation of the shear modulus.
phonons / thermodynamic and elastic properties / β-PtO2 / first-principles calculations
[1] |
C. Z. Yuan, H. B. Wu, Y. Xie, and X. W. Lou, Mixed transition-metal oxides: Design, synthesis, and energyrelated applications, Angew. Chem. Int. Ed. 53(6), 1488 (2014)
CrossRef
ADS
Google scholar
|
[2] |
Z. Chen, R. J. Xiao, C. Ma, Y. B. Qin, H. L. Shi, Z. W. Wang, Y. J. Song, Z. Wang, H. F. Tian, H. X. Yang, and J. Q. Li, Electronic structure of YMn2O5 studied by EELS and first-principles calculations, Front. Phys. 7(4), 429 (2012)
CrossRef
ADS
Google scholar
|
[3] |
Y. Y. Qi, Z. W. Niu, C. Cheng, and Y. Cheng, Structural and elastic properties of Ce2O3 under pressure from LDA+Umethod, Front. Phys. 8(4), 405 (2013)
CrossRef
ADS
Google scholar
|
[4] |
N. Sabourault, G. Mignani, A. Wagner, and C. Mioskowski, Platinum oxide (PtO2): A potent hydrosilylation catalyst, Org. Lett. 4(13), 2117 (2002)
CrossRef
ADS
Google scholar
|
[5] |
L. Maya, L. Riester, T. Thundat, and C. S. Yust, Characterization of sputtered amorphous platinum dioxide films, J. Appl. Phys. 84(11), 6382 (1998)
CrossRef
ADS
Google scholar
|
[6] |
L. B. Hunt, The Story of Adams’ Catalyst, Platin. Met. Rev. 6, 150 (1962)
|
[7] |
M. M. Najafpour and S. M. Hosseini, Highly dispersed PtO2 on layered Mn oxide as water-oxidizing catalysts, Int. J. Hydrogen Energy 41(16), 6798 (2016)
CrossRef
ADS
Google scholar
|
[8] |
S. Putzien, E. Louis, O. Nuyken, and F. E. Kühn, PtO2 as a “self-dosing” hydrosilylation catalyst,Catal. Sci. Technol. 2(4), 725 (2012)
CrossRef
ADS
Google scholar
|
[9] |
R. Wu, and W. H. Weber, The mechanism of the rutileto- CaCl2 phase transition: RuO2 and β-PtO2, J. Phys.: Condens. Matter 12(30), 6725 (2000)
CrossRef
ADS
Google scholar
|
[10] |
Y. Yang, O. Sugino, and T. Ohno, Band gap of β-PtO2 from first-principles, AIP Adv. 2(2), 022172 (2012)
CrossRef
ADS
Google scholar
|
[11] |
R. K. Nomiyama, M. J. Piotrowski, and J. L. F. Da Silva, Bulk structures of PtO and PtO2 from density functional calculations, Phys. Rev. B 84(10), 100101 (2011)
CrossRef
ADS
Google scholar
|
[12] |
H. R. Hoekstra, S. Siegel, and F. X. Gallagher, Reaction of platinum dioxide with some metal oxides, Adv. Chem. Ser. 98, 39 (1971)
CrossRef
ADS
Google scholar
|
[13] |
S. Siegel, H. R. Hoekstra, and B. S. Tani, The crystal structure of beta-platinum dioxide, J. Inorg. Nucl. Chem. 31(12), 3803 (1969)
CrossRef
ADS
Google scholar
|
[14] |
M. P. H. Fernandez and B. L. Chamberland, A new high pressure form of PtO2, J. Less Common Met. 99(1), 99 (1984)
CrossRef
ADS
Google scholar
|
[15] |
K. J. Range, F. Rau, U. Klement, and A. M. Heyns, β-PtO2: High pressure synthesis of single crystals and structure refinement, Mater. Res. Bull. 22(11), 1541 (1987)
CrossRef
ADS
Google scholar
|
[16] |
G. Kresse and J. Hafner, Ab initiomolecular dynamics for liquid metals, Phys. Rev. B 47(1), 558 (1993)
CrossRef
ADS
Google scholar
|
[17] |
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initiototal-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef
ADS
Google scholar
|
[18] |
D. M. Ceperley and B. J. Alder, Ground state of the electron gas by a stochastic method, Phys. Rev. Lett. 45(7), 566 (1980)
CrossRef
ADS
Google scholar
|
[19] |
J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23(10), 5048 (1981)
CrossRef
ADS
Google scholar
|
[20] |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef
ADS
Google scholar
|
[21] |
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
CrossRef
ADS
Google scholar
|
[22] |
H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12), 5188 (1976)
CrossRef
ADS
Google scholar
|
[23] |
A. Togo, F. Oba, and I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B 78(13), 134106 (2008)
CrossRef
ADS
Google scholar
|
[24] |
S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+Ustudy, Phys. Rev. B 57(3), 1505 (1998)
CrossRef
ADS
Google scholar
|
[25] |
Y. Yang, O. Sugino, and T. Ohno, Possible magnetic behavior in oxygen-deficient β-PtO2, Phys. Rev. B 85(3), 035204 (2012)
CrossRef
ADS
Google scholar
|
[26] |
F. D. Murnaghan, The compressibility of media under extreme pressures, Proc. Natl. Acad. Sci. USA 30(9), 244 (1944)
CrossRef
ADS
Google scholar
|
[27] |
S. Zhuo and K. Sohlberg, Platinum dioxide phases: Relative thermodynamic stability and kinetics of interconversion from first-principles,Physica B 381(1–2), 12 (2006)
CrossRef
ADS
Google scholar
|
[28] |
W. H. Weber, G. W. Graham, and J. R. McBride, Raman spectrum of β-PtO2: Evidence for the D2h12-to-D4h14 phase transition, Phys. Rev. B 42(17), 10969 (1990)
CrossRef
ADS
Google scholar
|
[29] |
G. Grimvall, Thermophysical Properties of Materials, Elsevier, 1999
|
[30] |
P. Debye, Zur Theorie der spezifischen Wärmen, Ann. Phys. 344(14), 789 (1912)
CrossRef
ADS
Google scholar
|
[31] |
P. L. Dulong and A.T. Petit, Recherches sur quelques points importans de la theorie de la Chaleur, 1819
|
[32] |
J. P. Watt, Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with orthorhombic symmetry, J. Appl. Phys. 50(10), 6290 (1979)
CrossRef
ADS
Google scholar
|
[33] |
A. Reuss, Account of the liquid limit of mixed crystals on the basis of the plasticity condition for single crystal, Z. Angew, Math. Mech. 9, 49 (1929)
CrossRef
ADS
Google scholar
|
[34] |
R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. Lond. 65, 349 (1952)
CrossRef
ADS
Google scholar
|
[35] |
W. Voigt, Lehrbuch der Kristallphysik, Teubner, Leipzig, 1928
|
[36] |
E. Schreiber, O. L. Anderson, and M. Saga, Elastic Constants and Their Measurement, McGraw-Hill, New York, 1973
|
[37] |
O. L. Anderson, A simplified method for calculating the Debye temperature from elastic constants, J. Phys. Chem. Solids 24(7), 909 (1963)
CrossRef
ADS
Google scholar
|
[38] |
H. J. Reichmann and S. D. Jacobsen, Sound velocities and elastic constants of ZnAl2O4 spinel and implications for spinel-elasticity systematics, Am. Mineral. 91(7), 1049 (2006)
CrossRef
ADS
Google scholar
|
[39] |
H. J. Reichmann and S. D. Jacobsen, High-pressure elasticity of a natural magnetite crystal, Am. Mineral. 89(7), 1061 (2004)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |