Topological gapless matters in three-dimensional ultracold atomic gases
Yong Xu
Topological gapless matters in three-dimensional ultracold atomic gases
Three-dimensional topological gapless matters with gapless degeneracies protected by a topological invariant defined over a closed manifold in momentum space have attracted considerable interest in various fields ranging from condensed matter materials to ultracold atomic gases. As a highly controllable and disorder free system, ultracold atomic gases provide a versatile platform to simulate topological gapless matters. Here, the current progress in studies of topological gapless phenomena in three-dimensional cold atom systems is summarized in the review. It is mainly focused on Weyl points, structured (type-II) Weyl points, Dirac points, nodal rings and Weyl exceptional rings in cold atoms. Since interactions in cold atoms can be controlled via Feshbach resonances, the progress in both superfluids for attractive interactions and non-interacting cold atom gases is reviewed.
ultracold atomic gases / Weyl points / Dirac points / nodal rings / Weyl exceptional rings
[1] |
P. A. M. Dirac, The quantum theory of the electron, Proc. R. Soc. Lond. A117(778), 610 (1928)
CrossRef
ADS
Google scholar
|
[2] |
H. Weyl, Elektron und gravitation (I), Z. Phys.56(5–6), 330 (1929)
CrossRef
ADS
Google scholar
|
[3] |
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys.81(1), 109 (2009)
CrossRef
ADS
Google scholar
|
[4] |
S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Electronic transport in two-dimensional graphene, Rev. Mod. Phys.83(2), 407 (2011)
CrossRef
ADS
Google scholar
|
[5] |
C. Herring, Accidental degeneracy in the energy bands of crystals, Phys. Rev.52(4), 365 (1937)
CrossRef
ADS
Google scholar
|
[6] |
G. Volovik, Zeros in the fermion spectrum in superfluid systems as diabolical points, JETP Lett.46(2), 98 (1987)
|
[7] |
G. E. Volovik, The Universe in a Helium Droplet, Clarendon Press, Oxford, 2003
|
[8] |
X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B83(20), 205101 (2011)
CrossRef
ADS
Google scholar
|
[9] |
K. Y. Yang, Y. M. Lu, and Y. Ran, Quantum Hall effects in a Weyl semimetal: Possible application in pyrochlore iridates, Phys. Rev. B84(7), 075129 (2011)
CrossRef
ADS
Google scholar
|
[10] |
A. A. Burkov and L. Balents, Weyl semimetal in a topological insulator multilayer, Phys. Rev. Lett.107(12), 127205 (2011)
CrossRef
ADS
Google scholar
|
[11] |
G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4, Phys. Rev. Lett.107(18), 186806 (2011)
CrossRef
ADS
Google scholar
|
[12] |
C. Fang, M. J. Gilbert, X. Dai, and B. A. Bernevig, Multi-Weyl topological semimetals stabilized by point group symmetry, Phys. Rev. Lett.108(26), 266802 (2012)
CrossRef
ADS
Google scholar
|
[13] |
S. A. Yang, H. Pan, and F. Zhang, Dirac and Weyl superconductors in three dimensions, Phys. Rev. Lett.113(4), 046401 (2014)
CrossRef
ADS
Google scholar
|
[14] |
H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, Weyl semimetal phase in noncentrosymmetric transitionmetal monophosphides, Phys. Rev. X5(1), 011029 (2015)
CrossRef
ADS
Google scholar
|
[15] |
H. Ishizuka, T. Hayata, M. Ueda, and N. Nagaosa, Emergent electromagnetic induction and adiabatic charge pumping in noncentrosymmetric Weyl Semimetals, Phys. Rev. Lett.117(21), 216601 (2016)
CrossRef
ADS
Google scholar
|
[16] |
C. Fang, L. Lu, J. Liu, and L. Fu, Topological semimetals with helicoid surface states, Nat. Phys.12(10), 936 (2016)
|
[17] |
M. Gong, S. Tewari, and C. Zhang, BCS–BEC crossover and topological phase transition in 3D spin–orbit coupled degenerate Fermi gases, Phys. Rev. Lett.107(19), 195303 (2011)
CrossRef
ADS
Google scholar
|
[18] |
J. H. Jiang, Tunable topological Weyl semimetal from simple-cubic lattices with staggered fluxes, Phys. Rev. A85(3), 033640 (2012)
CrossRef
ADS
Google scholar
|
[19] |
B. M. Anderson, G. Juzeliunas, V. M. Galitski, and I. B. Spielman, Synthetic 3D spin–orbit coupling, Phys. Rev. Lett.108(23), 235301 (2012)
CrossRef
ADS
Google scholar
|
[20] |
Y. Xu, R. L. Chu, and C. Zhang, Anisotropic Weyl fermions from the quasiparticle excitation spectrum of a 3D Fulde–Ferrell superfluid, Phys. Rev. Lett.112(13), 136402 (2014)
CrossRef
ADS
Google scholar
|
[21] |
Y. Xu and C. Zhang, Topological Fulde–Ferrell superfluids of a spin–orbit coupled Fermi gas, Int. J. Mod. Phys. B29(01), 1530001 (2015)
CrossRef
ADS
Google scholar
|
[22] |
B. Liu, X. Li, L. Yin, and W. V. Liu, Weyl superfluidity in a three-dimensional dipolar Fermi gas, Phys. Rev. Lett.114(4), 045302 (2015)
CrossRef
ADS
Google scholar
|
[23] |
S. Ganeshan, and S. Das Sarma, Constructing a Weyl semimetal by stacking one-dimensional topological phases, Phys. Rev. B91(12), 125438 (2015)
CrossRef
ADS
Google scholar
|
[24] |
X. Li and S. D. Sarma, Exotic topological density waves in cold atomic Rydberg-dressed fermions, Nat. Commun.6(1), 7137 (2015)
CrossRef
ADS
Google scholar
|
[25] |
T. Dubček, C. J. Kennedy, L. Lu, W. Ketterle, M. Soljačić, and H. Buljan, Weyl points in three-dimensional optical lattices: Synthetic magnetic monopoles in momentum space, Phys. Rev. Lett.114(22), 225301 (2015)
CrossRef
ADS
Google scholar
|
[26] |
Y. Xu, F. Zhang, and C. Zhang, Structured Weyl points in spin–orbit coupled fermionic superfluids, Phys. Rev. Lett.115(26), 265304 (2015)
CrossRef
ADS
Google scholar
|
[27] |
W. Y. He, S. Zhang, and K. T. Law, Realization and detection of Weyl semimetals and the chiral anomaly in cold atomic systems, Phys. Rev. A94(1), 013606 (2016)
CrossRef
ADS
Google scholar
|
[28] |
Y.-Q. Wang and X.-J. Liu, Predicted scaling behavior of Bloch oscillation in Weyl semimetals, Phys. Rev. A94, 031603(R) (2016)
|
[29] |
Y. Xu and L. M. Duan, Type-II Weyl points in threedimensional cold-atom optical lattices, Phys. Rev. A94(5), 053619 (2016)
CrossRef
ADS
Google scholar
|
[30] |
S. V. Syzranov, M. L. Wall, B. Zhu, V. Gurarie, and A. M. Rey, Emergent Weyl excitations in systems of polar particles, Nat. Commun.7(1), 13543 (2016)
CrossRef
ADS
Google scholar
|
[31] |
L. Lepori, I. C. Fulga, A. Trombettoni, and M. Burrello, PT-invariant Weyl semimetals in gauge-symmetric systems, Phys. Rev. B94(8), 085107 (2016)
CrossRef
ADS
Google scholar
|
[32] |
L. Lepori, I. C. Fulga, A.Trombettoni, and M. Burrello, Double Weyl points and Fermi arcs of topological semimetals in non-Abelian gauge potentials, Phys. Rev. A94(5), 053633 (2016)
CrossRef
ADS
Google scholar
|
[33] |
X. Y. Mai, D. W. Zhang, Z. Li, and S. L. Zhu, Exploring topological double-Weyl semimetals with cold atoms in optical lattices, Phys. Rev. A95(6), 063616 (2017)
CrossRef
ADS
Google scholar
|
[34] |
L. J. Lang, S. L. Zhang, K. T. Law, and Q. Zhou, Weyl points and topological nodal superfluids in a facecentered-cubic optical lattice, Phys. Rev. B96(3), 035145 (2017)
CrossRef
ADS
Google scholar
|
[35] |
B.-Z. Wang, Y.-H. Lu, W. Sun, S. Chen, Y. J. Deng, and X.-J. Liu, Dirac-, Rashba-, and Weyl-type spin–orbit couplings: Toward experimental realization in ultracold atoms, Phys. Rev. A97, 011605(R) (2018)
|
[36] |
Y. B. Yang, L. M. Duan, and Y. Xu, Continuously tunable topological pump in high-dimensional cold atomic gases, Phys. Rev. B98(16), 165128 (2018)
CrossRef
ADS
Google scholar
|
[37] |
X. F. Zhou, X. W. Luo, G. Chen, S. T. Jia, and C. Zhang, Rashba and Weyl spin–orbit coupling in an optical lattice clock, arXiv: 1804.09282 (2018)
|
[38] |
Y. Xu and Y. Hu, Scheme to equilibrate the quantized Hall response of topological systems from coherent dynamics, arXiv: 1807.09732 (2018)
|
[39] |
L. Lu, L. Fu, J. D. Joannopoulos, and M. Soljačić, Weyl points and line nodes in gyroid photonic crystals, Nat. Photonics7(4), 294 (2013)
CrossRef
ADS
Google scholar
|
[40] |
M. Xiao, W. J. Chen, W. Y. He, and C. T. Chan, Synthetic gauge flux and Weyl points in acoustic systems, Nat. Phys.11(11), 920 (2015)
|
[41] |
D. Z. Rocklin, B. G. Chen, M. Falk, V. Vitelli, and T. C. Lubensky, Mechanical Weyl modes in topological Maxwell lattices, Phys. Rev. Lett.116(13), 135503 (2016)
CrossRef
ADS
Google scholar
|
[42] |
B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, Experimental discovery of Weyl semimetal TaAs, Phys. Rev. X5(3), 031013 (2015)
CrossRef
ADS
Google scholar
|
[43] |
S. Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C. C. Lee, S. M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, Discovery of a Weyl fermion semimetal and topological Fermi arcs, Science349(6248), 613 (2015)
CrossRef
ADS
Google scholar
|
[44] |
L. Lu, Z. Wang, D. Ye, L. Ran, L. Fu, J. D. Joannopoulos, and M. Soljačić, Experimental observation of Weyl points, Science349(6248), 622 (2015)
CrossRef
ADS
Google scholar
|
[45] |
W. J. Chen, M. Xiao, and C. T. Chan, Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states, Nat. Commun.7(1), 13038 (2016)
CrossRef
ADS
Google scholar
|
[46] |
B. Yang, Q. H. Guo, B. Tremain, R. J.Liu, L. E. Barr, Q. H. Yan, W. L. Gao, H. C. Liu, Y. J. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, Ideal Weyl points and helicoid surface states in artificial photonic crystal structures, Science359(6379), 1013 (2018)
CrossRef
ADS
Google scholar
|
[47] |
A. A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X. Dai, and B. A. Bernevig, Type-II Weyl semimetals, Nature527(7579), 495 (2015)
CrossRef
ADS
Google scholar
|
[48] |
E. J. Bergholtz, Z. Liu, M. Trescher, R. Moessner, and M. Udagawa, Topology and interactions in a frustrated slab: Tuning from Weyl semimetals to C>1 fractional Chern insulators, Phys. Rev. Lett.114(1), 016806 (2015)
CrossRef
ADS
Google scholar
|
[49] |
Z. Yu, Y. Yao, and S. A. Yang, Predicted unusual magnetoresponse in type-II Weyl semimetals, Phys. Rev. Lett.117(7), 077202 (2016)
CrossRef
ADS
Google scholar
|
[50] |
M. Udagawa and E. J. Bergholtz, Field-selective anomaly and chiral mode reversal in type-II Weyl materials, Phys. Rev. Lett.117(8), 086401 (2016)
CrossRef
ADS
Google scholar
|
[51] |
T. E. O’Brien, M. Diez, and C. W. J. Beenakker, Magnetic breakdown and Klein tunneling in a type-II Weyl semimetal, Phys. Rev. Lett.116(23), 236401 (2016)
CrossRef
ADS
Google scholar
|
[52] |
A. A. Zyuzin and R. P. Tiwari, Intrinsic anomalous Hall effect in type-II Weyl semimetals, JETP Lett.103(11), 717 (2016)
CrossRef
ADS
Google scholar
|
[53] |
K. Deng, G. Wan, P. Deng, K. Zhang, S. Ding, E. Wang, M. Yan, H. Huang, H. Zhang, Z. Xu, J. Denlinger, A. Fedorov, H. Yang, W. Duan, H. Yao, Y. Wu, S. Fan, H. Zhang, X. Chen, and S. Zhou, Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2, Nat. Phys.12(12), 1105 (2016)
|
[54] |
L. Huang, T. M. McCormick, M. Ochi, Z. Zhao, M. T. Suzuki, R. Arita, Y. Wu, D. Mou, H. Cao, J. Yan, N. Trivedi, and A. Kaminski, Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2, Nat. Mater.15(11), 1155 (2016)
CrossRef
ADS
Google scholar
|
[55] |
A. Liang, J. W. Huang, S. M. Nie, Y. Ding, Q. Gao,
|
[56] |
A. Tamai, Q. S. Wu, I. Cucchi, F. Y. Bruno, S. Riccò, T. K. Kim, M. Hoesch, C. Barreteau, E. Giannini, C. Besnard, A. A. Soluyanov, and F. Baumberger, Fermi arcs and their topological character in the candidate type-II Weyl semimetal MoTe2, Phys. Rev. X6(3), 031021 (2016)
CrossRef
ADS
Google scholar
|
[57] |
S. Y. Xu, N. Alidoust, G. Q. Chang, H. Lu, B Singh, I. Belopolski,
CrossRef
ADS
Google scholar
|
[58] |
J. Jiang, Z. K. Liu, Y. Sun, H. F. Yang, C. R. Rajamathi, Y. P. Qi, L. X. Yang, C. Chen, H. Peng, C. C. Hwang, S. Z. Sun, S. K. Mo, I. Vobornik, J. Fujii, S. S. P. Parkin, C. Felser, B. H. Yan, and Y. L. Chen, Signature of type-II Weyl semimetal phase in MoTe2, Nat. Commun.8, 13973 (2017)
CrossRef
ADS
Google scholar
|
[59] |
A. Liang, J. W. Huang, S. M. Nie, Y. Ding, Q. Gao,
|
[60] |
N. Xu, Z. J. Wang, A. P. Weber, A. Magrez, P. Bugnon,
|
[61] |
F. Y. Bruno, A. Tamai, Q. S. Wu, I. Cucchi, C. Barreteau, A. de la Torre, S. McKeown Walker, S. Riccò, Z. Wang, T. K. Kim, M. Hoesch, M. Shi, N. C. Plumb, E. Giannini, A. A. Soluyanov, and F. Baumberger, Observation of large topologically trivial Fermi arcs in the candidate type-II Weyl semimetal WTe2, Phys. Rev. B94, 121112(R) (2016)
|
[62] |
J. Noh, S. Huang, D. Leykam, Y. D. Chong, K. P. Chen, and M. C. Rechtsman, Experimental observation of optical Weyl points and Fermi arc-like surface states, Nat. Phys.13(6), 611 (2017)
|
[63] |
B. Yang, Q. H. Guo, B. Tremain, L. E. Barr, W. L. Gao, H. C. Liu, B. Béri, Y. J. Xiang, D. Y. Fan, A. P. Hibbins, and S. Zhang, Direct observation of topological surfacestate arcs in photonic metamaterials, Nat. Commun.8(1), 97 (2017)
CrossRef
ADS
Google scholar
|
[64] |
A. A. Burkov, M. D. Hook, and L. Balents, Topological nodal semimetals, Phys. Rev. B84(23), 235126 (2011)
CrossRef
ADS
Google scholar
|
[65] |
C. Fang, H. Weng, X. Dai, and Z. Fang, Topological nodal line semimetals, Chin. Phys. B25(11), 117106 (2016)
CrossRef
ADS
Google scholar
|
[66] |
Y. K. Kim, B. J. Wieder, C. L. Kane, and A. M. Rappe, Dirac line nodes in inversion-symmetric crystals, Phys. Rev. Lett.115(3), 036806 (2015)
CrossRef
ADS
Google scholar
|
[67] |
L. K. Lim and R. Moessner, Pseudospin vortex ring with a nodal line in three dimensions, Phys. Rev. Lett.118(1), 016401 (2017)
CrossRef
ADS
Google scholar
|
[68] |
W. Chen, H. Z. Lu, and J. M. Hou, Topological semimetals with a double-helix nodal link, Phys. Rev. B96(4), 041102 (2017)
CrossRef
ADS
Google scholar
|
[69] |
Z. B. Yan, R. Bi, H. T. Shen, L. Lu, S.-C. Zhang, and Z. Wang, Nodal-link semimetals, Phys. Rev. B96, 041103(R) (2017)
|
[70] |
P. Y. Chang and C. H. Yee, Weyl-link semimetals, Phys. Rev. B96(8), 081114 (2017)
CrossRef
ADS
Google scholar
|
[71] |
R. Bi, Z. Yan, L. Lu, and Z. Wang, Nodal-knot semimetals, Phys. Rev. B96, 201305(R) (2017)
|
[72] |
C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, Observation of parity–time symmetry in optics, Nat. Phys.6(3), 192 (2010)
|
[73] |
B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Parity–time-symmetric whispering-gallery microcavities, Nat. Phys.10(5), 394 (2014)
|
[74] |
L. Feng, Z. J. Wong, R. M. Ma, Y. Wang, and X. Zhang, Single-mode laser by parity-time symmetry breaking, Science346(6212), 972 (2014)
CrossRef
ADS
Google scholar
|
[75] |
H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, Parity–timesymmetric microring lasers, Science346(6212), 975 (2014)
CrossRef
ADS
Google scholar
|
[76] |
J. M. Zeuner, M. C. Rechtsman, Y. Plotnik, Y. Lumer, S. Nolte, M. S. Rudner, M. Segev, and A. Szameit, Observation of a topological transition in the bulk of a non-Hermitian system, Phys. Rev. Lett.115(4), 040402 (2015)
CrossRef
ADS
Google scholar
|
[77] |
B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S.L. Chua, J. D. Joannopoulos, and M. Soljačić, Spawning rings of exceptional points out of Dirac cones, Nature525(7569), 354 (2015)
CrossRef
ADS
Google scholar
|
[78] |
T. Gao, E. Estrecho, K. Y. Bliokh, T. C. H. Liew, M. D. Fraser, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, Y. Yamamoto, F. Nori, Y. S. Kivshar, A. G. Truscott, R. G. Dall, and E. A. Ostrovskaya, Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard, Nature526(7574), 554 (2015)
CrossRef
ADS
Google scholar
|
[79] |
H. Xu, D. Mason, L. Jiang, and J. G. E. Harris, Topological energy transfer in an optomechanical system with exceptional points, Nature537(7618), 80 (2016)
CrossRef
ADS
Google scholar
|
[80] |
J. Li, A. K. Harter, J. Liu, L. de Melo, Y. N. Joglekar, and L. Luo, Observation of parity–time symmetry breaking transitions in a dissipative Floquet system of ultracold atoms, arXiv: 1608.05061 (2016)
|
[81] |
S. Weimann, M. Kremer, Y. Plotnik, Y. Lumer, S. Nolte, K. G. Makris, M. Segev, M. C. Rechtsman, and A. Szameit, Topologically protected bound states in photonic parity–time-symmetric crystals, Nat. Mater.16(4), 433 (2017)
CrossRef
ADS
Google scholar
|
[82] |
W. J. Chen, S. K. Özdemir, G. M. Zhao, J. Wiersig, and L. Yang, Exceptional points enhance sensing in an optical microcavity, Nature548(7666), 192 (2017)
CrossRef
ADS
Google scholar
|
[83] |
L. Xiao, X. Zhan, Z. H. Bian, K. K. Wang, X. Zhang, X. P. Wang, J. Li, K. Mochizuki, D. Kim, N. Kawakami, W. Yi, H. Obuse, B. C. Sanders, and P. Xue, Observation of topological edge states in parity–time-symmetric quantum walks, Nat. Phys.13(11), 1117 (2017)
|
[84] |
H. Zhou, C. Peng, Y. Yoon, C. W. Hsu, K. A. Nelson, L. Fu, J. D. Joannopoulos, M. Soljačić, and B. Zhen, Observation of bulk Fermi arc and polarization half charge from paired exceptional points, Science359(6379), 1009 (2018)
CrossRef
ADS
Google scholar
|
[85] |
A. Cerjan, S. Huang, K. P. Chen, Y. Chong, and M. C. Rechtsman, Experimental realization of a Weyl exceptional ring, arXiv: 1808.09541 (2018)
|
[86] |
M. S. Rudner and L. S. Levitov, Topological transition in a non-Hermitian quantum walk, Phys. Rev. Lett.102(6), 065703 (2009)
CrossRef
ADS
Google scholar
|
[87] |
K. Esaki, M. Sato, K. Hasebe, and M. Kohmoto, Edge states and topological phases in non-Hermitian systems, Phys. Rev. B84(20), 205128 (2011)
CrossRef
ADS
Google scholar
|
[88] |
C.E. Bardyn, M. A. Baranov, C. V. Kraus, E. Rico, A. İmamoǧlu, P. Zoller, and S. Diehl, Topology by dissipation, New J. Phys.15(8), 085001 (2013)
CrossRef
ADS
Google scholar
|
[89] |
S. Malzard, C. Poli, and H. Schomerus, Topologically protected defect states in open photonic systems with non-Hermitian charge-conjugation and parity–time symmetry, Phys. Rev. Lett.115(20), 200402 (2015)
CrossRef
ADS
Google scholar
|
[90] |
T. E. Lee, Anomalous edge state in a non-Hermitian lattice, Phys. Rev. Lett.116(13), 133903 (2016)
CrossRef
ADS
Google scholar
|
[91] |
Q. B. Zeng, B. Zhu, S. Chen, L. You, and R. Lü, Non-Hermitian Kitaev chain with complex on-site potentials, Phys. Rev. A94(2), 022119 (2016)
CrossRef
ADS
Google scholar
|
[92] |
D. Leykam, K. Y. Bliokh, C. Huang, Y. Chong, and F. Nori, Edge modes, degeneracies, and topological numbers in non-Hermitian systems, Phys. Rev. Lett.118(4), 040401 (2017)
CrossRef
ADS
Google scholar
|
[93] |
Y. Xu, S. T. Wang, and L. M. Duan, Weyl exceptional rings in a three-dimensional dissipative cold atomic gas, Phys. Rev. Lett.118(4), 045701 (2017)
CrossRef
ADS
Google scholar
|
[94] |
H. Menke and M. M. Hirschmann, Topological quantum wires with balanced gain and loss, Phys. Rev. B95(17), 174506 (2017)
CrossRef
ADS
Google scholar
|
[95] |
H. Shen, B. Zhen, and L. Fu, Topological band theory for Non-Hermitian Hamiltonians, Phys. Rev. Lett.120(14), 146402 (2018)
CrossRef
ADS
Google scholar
|
[96] |
S. Lieu, Topological phases in the non-Hermitian Su-Schrieffer-Heeger model, Phys. Rev. B97(4), 045106 (2018)
CrossRef
ADS
Google scholar
|
[97] |
A. A. Zyuzin and A. Yu. Zyuzin, Flat band in disorderdriven non-Hermitian Weyl semimetals, Phys. Rev. B97, 041203(R) (2018)
|
[98] |
C. Yin, H. Jiang, L. Li, R. Lü, and S. Chen, Geometrical meaning of winding number and its characterization of topological phases in one-dimensional chiral non-Hermitian systems, Phys. Rev. A97(5), 052115 (2018)
CrossRef
ADS
Google scholar
|
[99] |
S. Yao and Z. Wang, Edge states and topological invariants of Non-Hermitian systems, Phys. Rev. Lett.121(8), 086803 (2018)
CrossRef
ADS
Google scholar
|
[100] |
S. Yao and Z. Wang, Non-Hermitian Chern bands, Phys. Rev. Lett.121(13), 136802 (2018)
CrossRef
ADS
Google scholar
|
[101] |
Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa, and M. Ueda, Topological phases of non-Hermitian systems, Phys. Rev. X8(3), 031079 (2018)
CrossRef
ADS
Google scholar
|
[102] |
A. Cerjan, M. Xiao, L. Yuan, and S. Fan, Effects of non-Hermitian perturbations on Weyl Hamiltonians with arbitrary topological charges, Phys. Rev. B97(7), 075128 (2018)
CrossRef
ADS
Google scholar
|
[103] |
J. Carlström and E. J. Bergholtz, Exceptional links and twisted Fermi ribbons in non-Hermitian systems, Phys. Rev. A98(4), 042114 (2018)
CrossRef
ADS
Google scholar
|
[104] |
M. S. Rudner, M. Levin, and L. S. Levitov, Survival, decay, and topological protection in non-Hermitian quantum transport, arXiv: 1605.07652 (2016)
|
[105] |
K. Kawabata, S. Higashikawa, Z. Gong, Y. Ashida, and M. Ueda, arXiv: 1804.04676 (2018)
|
[106] |
K. Kawabata, K. Shiozaki, and M. Ueda, Anomalous helical edge states in a non-Hermitian Chern insulator, Phys. Rev. B98, 165148 (2018)
CrossRef
ADS
Google scholar
|
[107] |
Y. Chen and H. Zhai, Hall conductance of a non-Hermitian Chern insulator, Phys. Rev. B98, 245130 (2018)
CrossRef
ADS
Google scholar
|
[108] |
H. Wang, J. Ruan, and H. Zhang, Non-Hermitian nodalline semimetals with an anomalous bulk-boundary correspondence, Phys. Rev. B99, 075130 (2019)
CrossRef
ADS
Google scholar
|
[109] |
K. Luo, J. Feng, Y. X. Zhao, and R. Yu, Nodal manifolds bounded by exceptional points on non-Hermitian honeycomb lattices and electrical-circuit realizations, arXiv: 1810.09231 (2018)
|
[110] |
Q. B. Zeng, Y. B. Yang, and Y. Xu, Topological non-Hermitian quasicrystals, arXiv: 1901.08060 (2019)
|
[111] |
N. Goldman, J. C. Budich, and P. Zoller, Topological quantum matter with ultracold gases in optical lattices, Nat. Phys.12(7), 639 (2016)
|
[112] |
D. W. Zhang, Y. Q. Zhu, Y. X. Zhao, H. Yan, and S. L. Zhu, Topological quantum matter with cold atoms, arXiv: 1810.09228 (2018)
|
[113] |
M. Atala, M. Aidelsburger, J. T. Barreiro, D. Abanin, T. Kitagawa, E. Demler, and I. Bloch, Direct measurement of the Zak phase in topological Bloch bands, Nat. Phys.9, 795 (2013)
|
[114] |
M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes, and I. Bloch, Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices, Phys. Rev.Lett.111(18), 185301 (2013)
CrossRef
ADS
Google scholar
|
[115] |
H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Burton, and W. Ketterle, Realizing the harper Hamiltonian with laser-assisted tunneling in optical lattices, Phys. Rev. Lett.111(18), 185302 (2013)
CrossRef
ADS
Google scholar
|
[116] |
G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, Experimental realization of the topological Haldane model with ultracold fermions, Nature515(7526), 237 (2014)
CrossRef
ADS
Google scholar
|
[117] |
M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T. Barreiro, S. Nascimbène, N. R. Cooper, I. Bloch, and N. Goldman, Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms, Nat. Phys.11(2), 162 (2015)
|
[118] |
N. Fläschner, B. Rem, M. Tarnowski, D. Vogel, D. S. Lühmann, K. Sengstock, and C. Weitenberg, Experimental reconstruction of the Berry curvature in a Floquet Bloch band, Science352(6289), 1091 (2016)
CrossRef
ADS
Google scholar
|
[119] |
Z. Wu, L. Zhang, W. Sun, X. T. Xu, B. Z. Wang, S. C. Ji, Y. J. Deng, S. Chen, X. J. Liu, and J. W. Pan, Realization of two-dimensional spin–orbit coupling for Bose–Einstein condensates, Science354(6308), 83 (2016)
CrossRef
ADS
Google scholar
|
[120] |
W. Sun, B. Z. Wang, X. T. Xu, C. R. Yi, L. Zhang, Z. Wu, Y. J. Deng, X. J. Liu, S. Chen, and J. W. Pan, Highly controllable and robust 2D spin–orbit coupling for quantum gases, Phys. Rev. Lett.121(15), 150401 (2018)
CrossRef
ADS
Google scholar
|
[121] |
S. Nakajima, T. Tomita, S. Taie, T. Ichinose, H. Ozawa, L. Wang, M. Troyer, and Y. Takahashi, Topological Thouless pumping of ultracold fermions, Nat. Phys.12(4), 296 (2016)
|
[122] |
M. Lohse, C. Schweizer, O. Zilberberg, M. Aidelsburger, and I. Bloch, A Thouless quantum pump with ultracold bosonic atoms in an optical superlattice, Nat. Phys.12(4), 350 (2016)
|
[123] |
M. Lohse, C. Schweizer, H. M. Price, O. Zilberberg, and I. Bloch, Exploring 4D quantum Hall physics with a 2D topological charge pump, Nature553(7686), 55 (2018)
CrossRef
ADS
Google scholar
|
[124] |
P. Soltan-Panahi, J. Struck, P. Hauke, A. Bick, W. Plenkers, G. Meineke, C. Becker, P. Windpassinger, M. Lewenstein, and K. Sengstock, Multi-component quantum gases in spin-dependent hexagonal lattices, Nat. Phys.7(5), 434 (2011)
|
[125] |
L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, and T. Esslinger, Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice, Nature483(7389), 302 (2012)
CrossRef
ADS
Google scholar
|
[126] |
L. Huang, Z. Meng, P. Wang, P. Peng, S. L. Zhang, L. Chen, D. Li, Q. Zhou, and J. Zhang, Experimental realization of two-dimensional synthetic spin–orbit coupling in ultracold Fermi gases, Nat. Phys.12(6), 540 (2016)
|
[127] |
Z. Meng, L. Huang, P. Peng, D. Li, L. C. Chen, Y. Xu, C. Zhang, P. Wang, and J. Zhang, Experimental observation of a topological band gap opening in ultracold Fermi gases with two-dimensional spin–orbit coupling, Phys. Rev. Lett.117(23), 235304 (2016)
CrossRef
ADS
Google scholar
|
[128] |
X. T. Xu, C. R. Yi, B. Z. Wang, W. Sun, Y. Deng, X. J. Liu, S. Chen, and J. W. Pan, Precision mapping the topological bands of 2D spin–orbit coupling with microwave spin-injection spectroscopy, Sci. Bull.63(22), 1464 (2018)
CrossRef
ADS
Google scholar
|
[129] |
S. Sugawa, F. S. Carcoba, A. R. Perry, Y. C. Yue, and I. B. Spielman, Second Chern number of a quantum-simulated non-Abelian Yang monopole, Science360(6396), 1429 (2018)
CrossRef
ADS
Google scholar
|
[130] |
B. Song, C. He, S. Niu, L. Zhang, Z. J. Ren, X.J. Liu, and G. B. Jo, Observation of nodal-line semimetal with ultracold fermions in an optical lattice, arXiv: 1808.07428 (2018)
|
[131] |
H. Hu, L. Dong, Y. Cao, H. Pu, and X. J. Liu, Gapless topological Fulde–Ferrell superfluidity induced by an inplane Zeeman field, Phys. Rev. A90(3), 033624 (2014)
CrossRef
ADS
Google scholar
|
[132] |
K. J. Seo, L. Han, and C. A. R. Sá de Melo, Emergence of Majorana and Dirac particles in ultracold fermions via tunable interactions, spin–orbit effects, and Zeeman fields, Phys. Rev. Lett.109(10), 105303 (2012)
CrossRef
ADS
Google scholar
|
[133] |
Y. J. Lin, K. J. Garcia, and I. B. Spielman, Spin–orbitcoupled Bose–Einstein condensates, Nature471(7336), 83 (2011)
CrossRef
ADS
Google scholar
|
[134] |
J. Y. Zhang, S. C. Ji, Z. Chen, L. Zhang, Z. D. Du, B. Yan, G. S. Pan, B. Zhao, Y. J. Deng, H. Zhai, S. Chen, and J. W. Pan, Collective dipole oscillations of a spin–orbit coupled Bose–Einstein condensate, Phys. Rev. Lett.109(11), 115301 (2012)
CrossRef
ADS
Google scholar
|
[135] |
P. Wang, Z. Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai, and J. Zhang, Spin–orbit coupled degenerate Fermi gases, Phys. Rev. Lett.109(9), 095301 (2012)
CrossRef
ADS
Google scholar
|
[136] |
L. W. Cheuk, A. T. Sommer, Z. Hadzibabic, T. Yefsah, W. S. Bakr, and M. W. Zwierlein, Spin-injection spectroscopy of a spin–orbit coupled Fermi Gas, Phys. Rev. Lett.109(9), 095302 (2012)
CrossRef
ADS
Google scholar
|
[137] |
C. L. Qu, C. Hamner, M. Gong, C. W. Zhang, and P. Engels, Observation of Zitterbewegung in a spin–orbitcoupled Bose–Einstein condensate, Phys. Rev. A88, 021604(R) (2013)
|
[138] |
A. J. Olson, S.J. Wang, R. J. Niffenegger, C.H. Li, C. H. Greene, and Y. P. Chen, Tunable Landau–Zener transitions in a spin–orbit-coupled Bose–Einstein condensate, Phys. Rev. A90(1), 013616 (2014)
CrossRef
ADS
Google scholar
|
[139] |
X. Luo, L. Wu, J. Chen, Q. Guan, K. Gao, Z.F. Xu, L. You, and R. Wang, Tunable atomic spin–orbit coupling synthesized with a modulating gradient magnetic field, Sci. Rep.6(1), 18983 (2016)
CrossRef
ADS
Google scholar
|
[140] |
N. Q. Burdick, Y. J. Tang, and B. L. Lev, Long-lived spin–orbit-coupled degenerate dipolar Fermi gas, Phys. Rev. X6(3), 031022 (2016)
CrossRef
ADS
Google scholar
|
[141] |
B. Song, C. He, S. Zhang, E. Hajiyev, W. Huang, X.-J. Liu, and G.-B. Jo, Spin–orbit-coupled two-electron Fermi gases of ytterbium atoms, Phys. Rev. A 94, 061604(R) (2016)
|
[142] |
J. Li, W. Huang, B. Shteynas, S. Burchesky, F. Ç. Top, E. Su, J. Lee, A. O. Jamison, and W. Ketterle, Spin–orbit coupling and spin textures in optical superlattices, Phys. Rev. Lett.117(18), 185301 (2016)
CrossRef
ADS
Google scholar
|
[143] |
S. Kolkowitz, S. L. Bromley, T. Bothwell, M. L. Wall, G. E. Marti, A. P. Koller, X. Zhang, A. M. Rey, and J. Ye, Spin–orbit-coupled fermions in an optical lattice clock, Nature542(7639), 66 (2017)
CrossRef
ADS
Google scholar
|
[144] |
J. R. Li, J. Lee, W. Huang, S. Burchesky, B. Shteynas, F. Ç. Top, A. O. Jamison, and W. Ketterle, A stripe phase with supersolid properties in spin–orbit-coupled Bose–Einstein condensates, Nature543(7643), 91 (2017)
CrossRef
ADS
Google scholar
|
[145] |
B. Song, L. Zhang, C. He, T. F. J. Poon, E. Hajiyev, S. Zhang, X. J. Liu, and G. B. Jo, Observation of symmetryprotected topological band with ultracold fermions, Sci. Adv.4(2), 4748 (2018)
CrossRef
ADS
Google scholar
|
[146] |
V. Galitski and I. B. Spielman, Spin–orbit coupling in quantum gases, Nature494(7435), 49 (2013)
CrossRef
ADS
Google scholar
|
[147] |
H. Zhai, Degenerate quantum gases with spin–orbit coupling: A review, Rep. Prog. Phys.78(2), 026001 (2015)
CrossRef
ADS
Google scholar
|
[148] |
L. Zhang and X.J. Liu, Spin–orbit coupling and topological phases for ultracold atoms, arXiv: 1806.05628 (2018)
|
[149] |
Y. J. Wu, W. Y. Zhou, and S. P. Kou, Bogoliubov excitations in the Bose–Hubbard extension of a Weyl semimetal, Phys. Rev. A95(2), 023620 (2017)
CrossRef
ADS
Google scholar
|
[150] |
B. Huang and X. Yang, Mott insulator–superfluid phase transition in two-band Bose–Hubbard models with gapless nodal lines, J. Phys. At. Mol. Opt. Phys.51(1), 015302 (2018)
CrossRef
ADS
Google scholar
|
[151] |
W. Y. Zhou, Y. J. Wu, and S. P. Kou, Bogoliubov excitations in a Bose–Hubbard model on a hyperhoneycomb lattice, Chin. Phys. B27(5), 050302 (2018)
CrossRef
ADS
Google scholar
|
[152] |
C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach resonances in ultracold gases, Rev. Mod. Phys.82(2), 1225 (2010)
CrossRef
ADS
Google scholar
|
[153] |
B. M. Anderson, G. Juzeliunas, V. M. Galitski, and I. B. Spielman, Synthetic 3D spin–orbit coupling, Phys. Rev. Lett.108(23), 235301 (2012)
CrossRef
ADS
Google scholar
|
[154] |
T. Dubček, C. J. Kennedy, L. Lu, W. Ketterle, M. Soljačić, and H. Buljan, Weyl points in three-dimensional optical lattices: Synthetic magnetic monopoles in momentum space, Phys. Rev. Lett.114(22), 225301 (2015)
CrossRef
ADS
Google scholar
|
[155] |
Y. Xu and C. Zhang, Dirac and Weyl rings in threedimensional cold-atom optical lattices, Phys. Rev. A93(6), 063606 (2016)
CrossRef
ADS
Google scholar
|
[156] |
D. W. Zhang, Y. X. Zhao, R. B. Liu, Z. Y. Xue, S. L. Zhu, and Z. D. Wang, Quantum simulation of exotic PT-invariant topological nodal loop bands with ultracold atoms in an optical lattice, Phys. Rev. A93(4), 043617 (2016)
CrossRef
ADS
Google scholar
|
[157] |
A. M. Turner and A. Vishwanath, Beyond band insulators: Topology of semimetals and interacting phases, Topol. Insul.6, 293 (2013)
CrossRef
ADS
Google scholar
|
[158] |
P. Hosur and X. Qi, Recent developments in transport phenomena in Weyl semimetals, C. R. Phys.14(9–10), 857 (2013)
CrossRef
ADS
Google scholar
|
[159] |
O. Vafek and A. Vishwanath, Dirac fermions in solids: From high-Tc cuprates and graphene to topological insulators and Weyl semimetals, Annu. Rev. Condens. Matter Phys.5(1), 83 (2014)
CrossRef
ADS
Google scholar
|
[160] |
D. E. Kharzeev, The Chiral Magnetic Effect and anomaly-induced transport, Prog. Part. Nucl. Phys.75, 133 (2014)
CrossRef
ADS
Google scholar
|
[161] |
T. O. Wehling, A. M. Black-Schaffer, and A. V. Balatsky, Dirac materials, Adv. Phys.63(1), 1 (2014)
CrossRef
ADS
Google scholar
|
[162] |
W. Witczak-Krempa, G. Chen, Y. B. Kim, and L. Balents, Correlated quantum phenomena in the strong spin–orbit regime, Annu. Rev. Condens. Matter Phys.5(1), 57 (2014)
CrossRef
ADS
Google scholar
|
[163] |
A. Burkov, Chiral anomaly and transport in Weyl metals, J. Phys.: Condens. Matter27(11), 113201 (2015)
CrossRef
ADS
Google scholar
|
[164] |
A. P. Schnyder and P. M. R. Brydon, Topological surface states in nodal superconductors, J. Phys.: Condens. Matter27(24), 243201 (2015)
CrossRef
ADS
Google scholar
|
[165] |
M. Z. Hasan, S. Y. Xu, and G. Bian, Topological insulators, topological superconductors and Weyl fermion semimetals: Discoveries, perspectives and outlooks, Phys. Scr.T164, 014001 (2015)
CrossRef
ADS
Google scholar
|
[166] |
E. Witten, Three lectures on topological phases of matter, Riv. Nuovo Cim.39, 313 (2016)
|
[167] |
H. Weng, X. Dai, and Z. Fang, Topological semimetals predicted from first-principles calculations, J. Phys.: Condens. Matter28(30), 303001 (2016)
CrossRef
ADS
Google scholar
|
[168] |
A. Bansil, H. Lin, and T. Das, Topological band theory, Rev. Mod. Phys.88(2), 021004 (2016)
CrossRef
ADS
Google scholar
|
[169] |
A. A. Burkov, Topological semimetals, Nat. Mater.15(11), 1145 (2016)
CrossRef
ADS
Google scholar
|
[170] |
S. Jia, S. Y. Xu, and M. Z. Hasan, Weyl semimetals, Fermi arcs and chiral anomalies, Nat. Mater.15(11), 1140 (2016)
CrossRef
ADS
Google scholar
|
[171] |
B. Yan and C. Felser, Topological materials: Weyl semimetals, Annu. Rev. Condens. Matter Phys.8(1), 337 (2017)
CrossRef
ADS
Google scholar
|
[172] |
M. Z. Hasan, S. Y. Xu, I. Belopolski, and S. M. Huang, Discovery of Weyl fermion semimetals and topological Fermi arc states, Annu. Rev. Condens. Matter Phys.8(1), 289 (2017)
CrossRef
ADS
Google scholar
|
[173] |
L. Šmejkal, T. Jungwirth, and J. Sinova, Route towards Dirac and Weyl antiferromagnetic spintronics, Phys. Status Solidi Rapid Res. Lett.11(4), 1770317 (2017)
CrossRef
ADS
Google scholar
|
[174] |
A. Burkov, Weyl metals, Annu. Rev. Condens. Matter Phys.9(1), 359 (2018)
CrossRef
ADS
Google scholar
|
[175] |
S. V. Syzranov and L. Radzihovsky, High-dimensional disorder-driven phenomena in Weyl semimetals, semiconductors, and related systems, Ann. Rev. Condens. Matter Phys.9(1), 35 (2018)
CrossRef
ADS
Google scholar
|
[176] |
N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and Dirac semimetals in three-dimensional solids, Rev. Mod. Phys.90(1), 015001 (2018)
CrossRef
ADS
Google scholar
|
[177] |
T. Meng and L. Balents, Weyl superconductors, Phys. Rev. B86(5), 054504 (2012)
CrossRef
ADS
Google scholar
|
[178] |
G. B. Halasz and L. Balents, Time-reversal invariant realization of the Weyl semimetal phase, Phys. Rev. B85(3), 035103 (2012)
CrossRef
ADS
Google scholar
|
[179] |
M. O. Goerbig, J. N. Fuchs, G. Montambaux, and F. Piéchon, Tilted anisotropic Dirac cones in quinoid-type graphene and _-(BEDT-TTF)2I3, Phys. Rev. B78(4), 045415 (2008)
CrossRef
ADS
Google scholar
|
[180] |
J. Yang and N. Nagaosa, Classification of stable threedimensional Dirac semimetals with nontrivial topology, Nat. Commun.5(1), 4898 (2014)
CrossRef
ADS
Google scholar
|
[181] |
H. Huang, S. Zhou, and W. Duan, Type-II Dirac fermions in the PtSe2 class of transition metal dichalcogenides, Phys. Rev. B94(12), 121117 (2016)
CrossRef
ADS
Google scholar
|
[182] |
M. Yan, H. Huang, K. Zhang, E. Wang, W. Yao, K. Deng, G. Wan, H. Zhang, M. Arita, H. Yang, Z. Sun, H. Yao, Y. Wu, S. Fan, W. Duan, and S. Zhou, Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2, Nat. Commun.8(1), 257 (2017)
CrossRef
ADS
Google scholar
|
[183] |
G. G. Pyrialakos, N. S. Nye, N. V. Kantartzis, and D. N. Christodoulides, Emergence of type-II Dirac points in graphynelike photonic lattices, Phys. Rev. Lett.119(11), 113901 (2017)
CrossRef
ADS
Google scholar
|
[184] |
H. X. Wang, Y. Chen, Z. H. Hang, H. Y. Kee, and J. H. Jiang, Type-II Dirac photons, Quantum Materials2(1), 54 (2017)
CrossRef
ADS
Google scholar
|
[185] |
H. J. Noh, J. Jeong, E. J. Cho, K. Kim, B. I. Min, and B. G. Park, Experimental realization of type-II Dirac fermions in a PdTe2 superconductor, Phys. Rev. Lett.119(1), 016401 (2017)
CrossRef
ADS
Google scholar
|
[186] |
F. C. Fei, X. Y. Bo, R. Wang, B. Wu, J. Jiang, D. Z. Fu, M. Gao, H. Zheng, Y. L. Chen, X. F. Wang, H. J. Bu, F. Q. Song, X. G. Wan, B. G. Wang, and G. H. Wang, Nontrivial Berry phase and type-II Dirac transport in the layered material PdTe2, Phys. Rev. B96, 041201(R) (2017)
|
[187] |
Y. X. Zhao, A. P. Schnyder, and Z. D. Wang, Unified theory of PT and CP invariant topological metals and nodal superconductors, Phys. Rev. Lett.116(15), 156402 (2016)
CrossRef
ADS
Google scholar
|
[188] |
S. Q. Shen, Topological Insulators: Dirac equation in Condensed Matters, Springer, Berlin, 2012
CrossRef
ADS
Google scholar
|
[189] |
N. B. Kopnin, T. T. Heikkilä, and G. E. Volovik, Hightemperature surface superconductivity in topological flatband systems, Phys. Rev. B83, 220503(R) (2011)
|
[190] |
S. Li, Z.M. Yu, Y. Liu, S. Guan, S.S. Wang, X. Zhang, Y. Yao, and S. A. Yang, Type-II nodal loops: Theory and material realization, Phys. Rev. B96(8), 081106 (2017)
CrossRef
ADS
Google scholar
|
[191] |
J. He, X. Kong, W. Wang, and S. P. Kou, Type II nodal line semimetal, arXiv: 1709.08287 (2017)
|
[192] |
T. R. Chang, I. Pletikosic, T. Kong, G. Bian, A. Huang, J. Denlinger, S. K. Kushwaha, B. Sinkovic, H.-T. Jeng, T. Valla, W. W. Xie, and R. J. Cava, Realization of a type-II nodal-line semimetal in Mg3Bi2, arXiv: 1711.09167 (2017)
|
[193] |
N. Moiseyev, Non-Hermitian Quantum Mechanics, Cambridge University Press, Cambridge, 2011
CrossRef
ADS
Google scholar
|
[194] |
M. V. Berry, Physics of non-Hermitian degeneracies, Czech. J. Phys.54(10), 1039 (2004)
CrossRef
ADS
Google scholar
|
[195] |
I. Rotter, A non-Hermitian Hamilton operator and the physics of open quantum systems, J. Phys. A Math. Theor.42(15), 153001 (2009)
CrossRef
ADS
Google scholar
|
[196] |
W. D. Heiss, The physics of exceptional points, J. Phys. A Math. Theor.45(44), 444016 (2012)
CrossRef
ADS
Google scholar
|
[197] |
C. M. Bender and S. Boettcher, Real spectra in non-Hermitian Hamiltonians having PT symmetry, Phys. Rev. Lett.80(24), 5243 (1998)
CrossRef
ADS
Google scholar
|
[198] |
M. Kleman and O. D. Lavrentovich, Soft Matter Physics: An Introduction, XXV, 637 pp. Springer, Berlin Heidelberg New York Tokyo 2003, Hardcover EUR 39.95 (excl. VAT)
|
[199] |
G. Sundaram and Q. Niu, Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects, Phys. Rev. B59(23), 14915 (1999)
CrossRef
ADS
Google scholar
|
[200] |
Z. Zheng, M. Gong, X. Zou, C. Zhang, and G. Guo, Route to observable Fulde–Ferrell–Larkin–Ovchinnikov phases in three-dimensional spin–orbit-coupled degenerate Fermi gases, Phys. Rev. A87, 031602(R) (2013)
|
[201] |
F. Wu, G. C. Guo, W. Zhang, and W. Yi, Unconventional superfluid in a two-dimensional Fermi gas with anisotropic spin–orbit coupling and Zeeman fields, Phys. Rev. Lett.110(11), 110401 (2013)
CrossRef
ADS
Google scholar
|
[202] |
Y. Xu, C. Qu, M. Gong, and C. Zhang, Competing superfluid orders in spin–orbit-coupled fermionic cold-atom optical lattices, Phys. Rev. A89(1), 013607 (2014)
CrossRef
ADS
Google scholar
|
[203] |
P. Fulde and R. A. Ferrell, Superconductivity in a strong spin-exchange field, Phys. Rev.135(3A), A550 (1964)
CrossRef
ADS
Google scholar
|
[204] |
A. I. Larkin and Y. N. Ovchinnikov, Nonuniform state of superconductors, Zh. Eksp. Teor. Fiz.47, 1136 (1964) (Sov. Phys. JETP20, 762 (1965))
|
[205] |
D. Xiao, M. C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys.82(3), 1959 (2010)
CrossRef
ADS
Google scholar
|
[206] |
Y. Cao, S. H. Zou, X. J. Liu, S. Yi, G. L. Long, and H. Hu, Gapless topological Fulde–Ferrell superfluidity in spin–orbit coupled Fermi gases, Phys. Rev. Lett.113(11), 115302 (2014)
CrossRef
ADS
Google scholar
|
[207] |
Y. Xu and C. Zhang, Berezinskii–Kosterlitz–Thouless phase transition in 2D spin–orbit-coupled Fulde–Ferrell superfluids, Phys. Rev. Lett.114(11), 110401 (2015)
CrossRef
ADS
Google scholar
|
[208] |
Y. Cao, X. J. Liu, L. He, G. L. Long, and H. Hu, Superfluid density and Berezinskii–Kosterlitz–Thouless transition of a spin–orbit-coupled Fulde–Ferrell superfluid, Phys. Rev. A91(2), 023609 (2015)
CrossRef
ADS
Google scholar
|
[209] |
X. Z. Ying and A. Kamenev, Symmetry-protected topological metals, Phys. Rev. Lett.121(8), 086810 (2018)
CrossRef
ADS
Google scholar
|
[210] |
W. Y. He, D. H. Xu, B. T. Zhou, Q. Zhou, and K. T. Law, From nodal-ring topological superfluids to spiral Majorana modes in cold atomic systems, Phys. Rev. A97(4), 043618 (2018)
CrossRef
ADS
Google scholar
|
[211] |
M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys.82(4), 3045 (2010)
CrossRef
ADS
Google scholar
|
[212] |
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys.83(4), 1057 (2011)
CrossRef
ADS
Google scholar
|
[213] |
J. Alicea, New directions in the pursuit of Majorana fermions in solid state systems, Rep. Prog. Phys.75(7), 076501 (2012)
CrossRef
ADS
Google scholar
|
[214] |
X. J. Liu, K. T. Law, and T. K. Ng, Realization of 2D spin–orbit interaction and exotic topological orders in cold atoms, Phys. Rev. Lett.112(8), 086401 (2014)
CrossRef
ADS
Google scholar
|
[215] |
B. J. Wieder, Y. Kim, A. M. Rappe, and C. L. Kane, Double Dirac semimetals in three dimensions, Phys. Rev. Lett.116(18), 186402 (2016)
CrossRef
ADS
Google scholar
|
[216] |
B. Bradlyn, J. Cano, Z. Wang, M. G. Vergniory, C. Felser, R. J. Cava, and B. A. Bernevig, Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals, Science353(6299), 6299 (2016)
CrossRef
ADS
Google scholar
|
[217] |
Y. Q. Zhu, D. W. Zhang, H. Yan, D. Y. Xing, and S. L. Zhu, Emergent pseudospin-1 Maxwell fermions with a threefold degeneracy in optical lattices, Phys. Rev. A96(3), 033634 (2017)
CrossRef
ADS
Google scholar
|
[218] |
H. Hu, J. Hou, F. Zhang, and C. Zhang, Topological triply degenerate points induced by spin-tensormomentum couplings, Phys. Rev. Lett.120(24), 240401 (2018)
CrossRef
ADS
Google scholar
|
[219] |
I. C. Fulga, L. Fallani, and M. Burrello, Geometrically protected triple-point crossings in an optical lattice, Phys. Rev. B97, 121402(R) (2018)
|
[220] |
X. Y. Mai, Y. Q. Zhu, Z. Li, D. W. Zhang, and S. L. Zhu, Topological metal bands with double-triple-point fermions in optical lattices, arXiv: 1810.11560 (2018)
|
[221] |
B. Lian and S. C. Zhang, Five-dimensional generalization of the topological Weyl semimetal, Phys. Rev. B94(4), 041105 (2016)
CrossRef
ADS
Google scholar
|
[222] |
B. Lian and S. C. Zhang, Weyl semimetal and topological phase transition in five dimensions, Phys. Rev. B95(23), 235106 (2017)
CrossRef
ADS
Google scholar
|
[223] |
H. M. Price, O. Zilberberg, T. Ozawa, I. Carusotto, and N. Goldman, Four-dimensional quantum Hall effect with ultracold atoms, Phys. Rev. Lett.115(19), 195303 (2015)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |