Possible phase transition of anisotropic frustrated Heisenberg model at finite temperature

Ai-Yuan Hu, Lin Wen, Guo-Pin Qin, Zhi-Min Wu, Peng Yu, Yu-Ting Cui

PDF(1645 KB)
PDF(1645 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (5) : 53601. DOI: 10.1007/s11467-019-0895-2
Research article
Research article

Possible phase transition of anisotropic frustrated Heisenberg model at finite temperature

Author information +
History +

Abstract

The frustrated spin-1/2 J1aJ1bJ2 antiferromagnet with anisotropy on the two-dimensional square lattice was investigated, where the parameters J1aand J1b represent the nearest neighbor exchanges and along the x and y directions, respectively. J2 represents the next-nearest neighbor exchange. The anisotropy includes the spatial and exchange anisotropies. Using the double-time Green’s function method, the effects of the interplay of exchanges and anisotropy on the possible phase transition of the Néel state and stripe state were discussed. Our results indicated that, in the case of anisotropic parameter 0≤η<1, the Néel and stripe states can exist and have the same critical temperature as long as J2 = J1b/2. Under such parameters, a first-order phase transformation between the Néel and stripe states can occur below the critical point. For J2J1b/2, our results indicate that the Néel and stripe states can also exist, while their critical temperatures differ. When J2>J1b/2, a first-order phase transformation between the two states may also occur. However, for J2<J1b/2, the Néel state is always more stable than the stripe state.

Keywords

frustrated Heisenberg model / quantum phase transition / magnetic anisotropy / antiferromagnetics

Cite this article

Download citation ▾
Ai-Yuan Hu, Lin Wen, Guo-Pin Qin, Zhi-Min Wu, Peng Yu, Yu-Ting Cui. Possible phase transition of anisotropic frustrated Heisenberg model at finite temperature. Front. Phys., 2019, 14(5): 53601 https://doi.org/10.1007/s11467-019-0895-2

References

[1]
G. Misguich and C. Lhuillier, Frustrated Spin Systems, 2nd Ed., edited by H. T. Diep, World Scientific, 2013
[2]
J. R. Viana and J. R. deSousa, Anisotropy effects in frustrated Heisenberg antiferromagnets on a square lattice, Phys. Rev. B75(5), 052403 (2007)
CrossRef ADS Google scholar
[3]
Y. Z. Ren, N. H. Tong, and X. C. Xie, Cluster meanfield theory study of J1–J2 Heisenberg model on a square lattice, J. Phys.: Condens. Matter26(11), 115601 (2014)
CrossRef ADS Google scholar
[4]
S. S. Gong, W. Zhu, D. N. Sheng, O. I. Motrunich, and M. P. A. Fisher, Plaquette ordered phase and quantum phase diagram in the spin-1/2 J1–J2 Square Heisenberg Model, Phys. Rev. Lett.113(2), 027201 (2014)
CrossRef ADS Google scholar
[5]
H. C. Jiang, H. Yao, and L. Balents, Spin liquid ground state of the spin-1/2 square J1–J2 Heisenberg model, Phys. Rev. B86(2), 024424 (2012)
CrossRef ADS Google scholar
[6]
B. Schmidt, M. Siahatgar, and P. Thalmeier, Ordered moment in the anisotropic and frustrated square lattice Heisenberg model, Phys. Rev. B83(7), 075123 (2011)
CrossRef ADS Google scholar
[7]
R. Darradi, O. Derzhko, R. Zinke, J. Schulenburg, S. E. Krüger, and J. Richter, Ground state phases of the spin-1/2 J1–J2 Heisenberg antiferromagnet on the square lattice: A high-order coupled cluster treatment, Phys. Rev. B78(21), 214415 (2008)
CrossRef ADS Google scholar
[8]
R. L. Doretto, Plaquette valence-bond solid in the squarelattice J1–J2 antiferromagnet Heisenberg model: A bond operator approach, Phys. Rev. B89(10), 104415 (2014)
CrossRef ADS Google scholar
[9]
T. Roscilde, A. Feiguin, A. L. Chernyshev, S. Liu, and S. Haas, Anisotropy-induced ordering in the quantum J1–J2 antiferromagnet, Phys. Rev. Lett.93(1), 017203 (2004)
CrossRef ADS Google scholar
[10]
J. F. Yu and Y. J. Kao, Spin-1/2 J1–J2 Heisenberg antiferromagnet on a square lattice: A plaquette renormalized tensor network study, Phys. Rev. B85(9), 094407 (2012)
CrossRef ADS Google scholar
[11]
R. F. Bishop, P. H. Y. Li, D. J. J. Farnell, and C. E. Campbell, Magnetic order in a spin-1/2 interpolating square-triangle Heisenberg antiferromagnet, Phys. Rev. B79(17), 174405 (2009)
CrossRef ADS Google scholar
[12]
R. F. Bishop, P. H. Y. Li, R. Darradi, J. Schulenburg, and J. Richter, Effect of anisotropy on the ground-state magnetic ordering of the spin-half quantum J1XXZ−J2XXZ model on the square lattice, Phys. Rev. B78(5), 054412 (2008)
CrossRef ADS Google scholar
[13]
L. Wang, Z. C. Gu, F. Verstraete, and X. G. Wen, Tensorproduct state approach to spin-12 square J1–J2 antiferromagnetic Heisenberg model: Evidence for deconfined quantum criticality, Phys. Rev. B94(7), 075143 (2016)
CrossRef ADS Google scholar
[14]
N. D. Mermin and H. Wagner, Absence of ferromagnetism or antiferro-magnetism in one- or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett.17(22), 1133 (1966)
CrossRef ADS Google scholar
[15]
A. A. Nersesyan and A. M. Tsvelik, Spinons in more than one dimension: Resonance valence bond state stabilized by frustration, Phys. Rev. B67(2), 024422 (2003)
CrossRef ADS Google scholar
[16]
K. Majumdar, Second-order quantum corrections for the frustrated spatially anisotropic spin-1/2 Heisenberg antiferromagnet on a square lattice, Phys. Rev. B82(14), 144407 (2010)
CrossRef ADS Google scholar
[17]
K. Majumdar, Magnetic phase diagram of a spatially anisotropic, frustrated spin-1/2 Heisenberg antiferromagnet on a stacked square lattice, J. Phys.: Condens. Matter23(4), 046001 (2011)
CrossRef ADS Google scholar
[18]
A. A. Tsirlin and H. Rosner, Extension of the spin-1/2 frustrated square lattice model: The case of layered vanadium phosphates, Phys. Rev. B79(21), 214417 (2009)
CrossRef ADS Google scholar
[19]
O. Volkova, I. Morozov, V. Shutov, E. Lapsheva, P. Sindzingre, O. Cépas, M. Yehia, V. Kataev, R. Klingeler, B. Büchner, and A. Vasiliev, Realization of the Nersesyan–Tsvelik model in (NO)(Cu(NO3)3), Phys. Rev. B82(5), 054413 (2010)
CrossRef ADS Google scholar
[20]
O. Janson, A. A. Tsirlin, and H. Rosner, Antiferromagnetic spin-1/2 chains in (NO)Cu(NO3)3: A microscopic study, Phys. Rev. B82(18), 184410 (2010)
CrossRef ADS Google scholar
[21]
H. Y. Wang, Green’s Function in Condensed Matter Physics, Alpha Science International Ltd. and Science Press, 2012
[22]
P. Fröbrich and P. J. Kuntz, Many-body Green’s function theory of Heisenberg films, Phys. Rep.432(5–6), 223 (2006)
CrossRef ADS Google scholar
[23]
A. Y. Hu and Q. Wang, The magnetic properties of three-dimensional spin-1 easy-axis single-ion anisotropic antiferromagnets, Solid State Commun.150(13–14), 568 (2010)
CrossRef ADS Google scholar
[24]
A. Y. Hu and H. Y. Wang, The exchange interaction values of perovskite-type materials EuTiO3 and EuZrO3, J. Appl. Phys.116(19), 193903 (2014)
CrossRef ADS Google scholar
[25]
H. Y. Wang, L. J. Zhai, and M. Qian, The internal energies of Heisenberg magnetic systems, J. Magn. Magn. Mater.354(3), 309 (2014)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1645 KB)

Accesses

Citations

Detail

Sections
Recommended

/