Ab initio studies of copper hydrides under high pressure

Xue-Hui Xiao, De-Fang Duan, Yan-Bin Ma, Hui Xie, Hao Song, Da Li, Fu-Bo Tian, Bing-Bing Liu, Hong-Yu Yu, Tian Cui

PDF(5391 KB)
PDF(5391 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (4) : 43601. DOI: 10.1007/s11467-019-0894-3
Research article
Research article

Ab initio studies of copper hydrides under high pressure

Author information +
History +

Abstract

The crystal structure, electronic structure, and superconductivity of copper hydrides at high pressure have been studied by ab initio calculation. Consistent with experimental report, results show that the predicted stoichiometry Cu2H with the P-3m1 space group is stable above 16.8 GPa. The stoichiometry of CuH with the Fm-3m space group is predicted to be synthesized above 30 GPa, but it is metastable and dynamical instable up to 120 GPa. The electronic band calculations reveal that Cu2H is a good metal at a stable pressure range, whereas CuH is an insulator. Moreover, the other hydrogenrich compounds CuH2 and CuH3 are thermodynamically and dynamically unstable, respectively. The calculated superconducting transition temperature (T c) of Cu2H at 40 GPa is 0.028 K by using the Allen-Dynes modified McMillan equation.

Keywords

copper hydrides / superconductivity / density functional theory

Cite this article

Download citation ▾
Xue-Hui Xiao, De-Fang Duan, Yan-Bin Ma, Hui Xie, Hao Song, Da Li, Fu-Bo Tian, Bing-Bing Liu, Hong-Yu Yu, Tian Cui. Ab initio studies of copper hydrides under high pressure. Front. Phys., 2019, 14(4): 43601 https://doi.org/10.1007/s11467-019-0894-3

References

[1]
L. Gao, Y. Xue, F. Chen, Q. Xiong, R. Meng, D. Ramirez, C. Chu, J. H. Eggert, and H. K. Mao, Superconductivity up to 164 K in HgBa2Cam−1CumO2m+2+d (m= 1, 2, and 3) under quasihydrostatic pressures, Phys. Rev. B 50(6), 4260 (1994)
CrossRef ADS Google scholar
[2]
X. Jin, X. Meng, Z. He, Y. Ma, B. Liu, T. Cui, G. Zou, and H. K. Mao, Superconducting high-pressure phases of disilane, Proc. Natl. Acad. Sci. USA 107(22), 9969 (2010)
CrossRef ADS Google scholar
[3]
S. M. Souliou, A. Subedi, T. Song, T. Lin, K. Syassen, B. Keimer, and M. Le Tacon, Pressure-induced phase transition and superconductivity in YBa2Cu4O8, Phys. Rev. B 90(14), 140501 (2014)
CrossRef ADS Google scholar
[4]
R. Szcze¸śniak and A. P. Durajski, Superconductivity well above room temperature in compressed MgH6, Front. Phys. 11(6), 117406 (2016)
CrossRef ADS Google scholar
[5]
D. Li, Y. Liu, F. Tian, S. Wei, Z. Liu, D. Duan, B. Liu, and T. Cui, Pressure-induced superconducting ternary hydride H3SXe: A theoretical investigation, Front. Phys. 13(5), 137107 (2018)
CrossRef ADS Google scholar
[6]
J. Lv, X. Yang, D. Xu, Y. Huang, H.B. Wang, and H. Wang, High-pressure polymorphs of LiPN2: A firstprinciples study, Front. Phys. 13(5), 136104 (2018)
CrossRef ADS Google scholar
[7]
T. Scheler, O. Degtyareva, M. Marqués, C. L. Guillaume, J. E. Proctor, S. Evans, and E. Gregoryanz, Synthesis and properties of platinum hydride, Phys. Rev. B 83(21), 214106 (2011)
CrossRef ADS Google scholar
[8]
P. Zaleski-Ejgierd, V. Labet, T. A. Strobel, R. Hoffmann, and N. W. Ashcroft, WHn under pressure, J. Phys.: Condens. Matter 24(15), 155701 (2012)
CrossRef ADS Google scholar
[9]
B. Li, Y. Ding, D. Y. Kim, R. Ahuja, G. Zou, and H. K. Mao, Rhodium dihydride (RhH2) with high volumetric hydrogen density, Proc. Natl. Acad. Sci. USA 108(46), 18618 (2011)
CrossRef ADS Google scholar
[10]
M. Wang, J. Binns, M. E. Donnelly, M. Peña-Alvarez, P. Dalladay-Simpson, and R. T. Howie, High pressure synthesis and stability of cobalt hydrides, J. Chem. Phys. 148(14), 144310 (2018)
CrossRef ADS Google scholar
[11]
L. Wang, D. Duan, H. Yu, H. Xie, X. Huang, Y. Ma, F. Tian, D. Li, B. Liu, and T. Cui, High-pressure formation of cobalt polyhydrides: A first-principle study, Inorg. Chem. 57(1), 181 (2018)
CrossRef ADS Google scholar
[12]
T. Scheler, M. Marqués, Z. Konôpková, C. L. Guillaume, R. T. Howie, and E. Gregoryanz, High-pressure synthesis and characterization of iridium trihydride, Phys. Rev. Lett. 111(21), 215503 (2013)
CrossRef ADS Google scholar
[13]
C. M. Pépin, A. Dewaele, G. Geneste, P. Loubeyre, and M. Mezouar, New iron hydrides under high pressure, Phys. Rev. Lett. 113(26), 265504 (2014)
CrossRef ADS Google scholar
[14]
C. M. Pépin, G. Geneste, A. Dewaele, M. Mezouar, and P. Loubeyre, Synthesis of FeH5: A layered structure with atomic hydrogen slabs, Science 357(6349), 382 (2017)
CrossRef ADS Google scholar
[15]
A. Wurtz and C. R. Hebd, Sur l’hydrure de cuivre, Seances Acad. Sci. 18, 702 (1844)
[16]
C. Donnerer, T. Scheler, and E. Gregoryanz, Highpressure synthesis of noble metal hydrides, J. Chem. Phys. 138(13), 134507 (2013)
CrossRef ADS Google scholar
[17]
P. Hasin and Y. Wu, Sonochemical synthesis of copper hydride (CuH), Chem. Commun. 48(9), 1302 (2012)
CrossRef ADS Google scholar
[18]
M. Tkacz and R. Burtovyy, Decomposition of the hexagonal copper hydride at high pressure, Solid State Commun. 132(1), 37 (2004)
CrossRef ADS Google scholar
[19]
N. Fitzsimons, W. Jones, and P. Herley, Aspects of the synthesis of copper hydride and supported copper hydride, Catal. Lett. 15(1–2), 83 (1992)
CrossRef ADS Google scholar
[20]
N. W. Ashcroft, Hydrogen dominant metallic alloys: High temperature superconductors? Phys. Rev. Lett. 92(18), 187002 (2004)
CrossRef ADS Google scholar
[21]
D. Duan, Y. Liu, F. Tian, D. Li, X. Huang, Z. Zhao, H. Yu, B. Liu, W. Tian, and T. Cui, Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity, Sci. Rep. 4(1), 6968 (2015)
CrossRef ADS Google scholar
[22]
D. Duan, X. Huang, F. Tian, D. Li, H. Yu, Y. Liu, Y. Ma, B. Liu, and T. Cui, Pressure-induced decomposition of solid hydrogen sulfide, Phys. Rev. B 91(18), 180502 (2015)
CrossRef ADS Google scholar
[23]
A. P. Drozdov, M. I. Eremets, and I. A. Troyan, Conventional superconductivity at 190 K at high pressures, arXiv: 1412.0460 (2014)
[24]
Y. Li, J. Hao, H. Liu, J. S. Tse, Y. Wang, and Y. Ma, Pressure-stabilized superconductive yttrium hydrides, Sci. Rep. 5(1), 09948 (2015)
CrossRef ADS Google scholar
[25]
F. Peng, Y. Sun, C. J. Pickard, R. J. Needs, Q. Wu, and Y. Ma, Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to roomtemperature superconductivity, Phys. Rev. Lett. 119(10), 107001 (2017)
CrossRef ADS Google scholar
[26]
H. Liu, I. I. Naumov, R. Hoffmann, N. W. Ashcroft, and R. J. Hemley, Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure, Proc. Natl. Acad. Sci. USA 114(27), 6990 (2017)
CrossRef ADS Google scholar
[27]
M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini, Y. Meng, V. V. Struzhkin, and R. J. Hemley, Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures, Phys. Rev. Lett. 122(2), 027001 (2019)
CrossRef ADS Google scholar
[28]
A. R. Oganov and C. W. Glass, Crystal structure prediction using ab initio evolutionary techniques: Principles and applications, J. Chem. Phys. 124(24), 244704 (2006)
CrossRef ADS Google scholar
[29]
A. R. Oganov, A. O. Lyakhov, and M. Valle, How evolutionary crystal structure prediction works — and why, Acc. Chem. Res. 44(3), 227 (2011)
CrossRef ADS Google scholar
[30]
A. O. Lyakhov, A. R. Oganov, H. T. Stokes, and Q. Zhu, New developments in evolutionary structure prediction algorithm USPEX, Comput. Phys. Commun. 184(4), 1172 (2013)
CrossRef ADS Google scholar
[31]
C. J. Pickard and R. J. Needs, High-pressure phases of silane, Phys. Rev. Lett. 97(4), 045504 (2006)
CrossRef ADS Google scholar
[32]
C. J. Pickard and R. J. Needs, Ab initio random structure searching, J. Phys.: Condens. Matter 23(5), 053201 (2011)
CrossRef ADS Google scholar
[33]
C. Hu, A. R. Oganov, Q. Zhu, G. R. Qian, G. Frapper, A. O. Lyakhov, and H. Y. Zhou, Pressure-induced stabilization and insulator-superconductor transition of BH, Phys. Rev. Lett. 110(16), 165504 (2013)
CrossRef ADS Google scholar
[34]
P. Zaleski-Ejgierd, R. Hoffmann, and N. W. Ashcroft, High pressure stabilization and emergent forms of PbH4, Phys. Rev. Lett. 107(3), 037002 (2011)
CrossRef ADS Google scholar
[35]
Y. Liu, D. Duan, F. Tian, X. Huang, D. Li, Z. Zhao, X. Sha, B. Chu, H. Zhang, B. Liu, and T. Cui, Crystal structures and properties of the CH4H2 compound under high pressure, RSC Adv. 4(71), 37569 (2014)
CrossRef ADS Google scholar
[36]
C. J. Pickard and R. J. Needs, Structure of phase III of solid hydrogen, Nat. Phys. 3(7), 473 (2007)
[37]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[38]
P. E. Blöhl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef ADS Google scholar
[39]
G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef ADS Google scholar
[40]
S. Baroni, S. de Gironcoli, A. P. Dal Corso, and P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73(2), 515 (2001)
CrossRef ADS Google scholar
[41]
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, , QUANTUM ESPRESSO: A modular and opensource software project for quantum simulations of materials, J. Phys.: Condens. Matter 21(39), 395502 (2009)
CrossRef ADS Google scholar
[42]
H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12), 5188 (1976)
CrossRef ADS Google scholar
[43]
K. Parlinski, Computer code PHONON, http://wolf.ifj.edu.pl/phonon/
[44]
P. B. Allen and R. C. Dynes, Transition temperature of strong-coupled superconductors reanalyzed, Phys. Rev. B 12(3), 905 (1975)
CrossRef ADS Google scholar
[45]
G. Gao, H. Wang, L. Zhu, and Y. Ma, Pressure-induced formation of noble metal hydrides, J. Phys. Chem. C 116(2), 1995 (2012)
CrossRef ADS Google scholar
[46]
J. P. Perdew and M. Levy, Physical content of the exact kohn-sham orbital energies: Band gaps and derivative discontinuities, Phys. Rev. Lett. 51(20), 1884 (1983)
CrossRef ADS Google scholar
[47]
L. J. Sham and M. Schlüter, Density-functional theory of the energy gap, Phys. Rev. Lett. 51(20), 1888 (1983)
CrossRef ADS Google scholar
[48]
P. Mori-Sánchez, A. J. Cohen, and W. Yang, Localization and delocalization errors in density functional theory and implications for band-gap prediction, Phys. Rev. Lett. 100(14), 146401 (2008)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(5391 KB)

Accesses

Citations

Detail

Sections
Recommended

/