Quantum transport in topological semimetals under magnetic fields (II)

Hai-Peng Sun, Hai-Zhou Lu

PDF(4045 KB)
PDF(4045 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (3) : 33405. DOI: 10.1007/s11467-019-0890-7
Review article
Review article

Quantum transport in topological semimetals under magnetic fields (II)

Author information +
History +

Abstract

We review our recent works on the quantum transport, mainly in topological semimetals and also in topological insulators, organized according to the strength of the magnetic field. At weak magnetic fields, we explain the negative magnetoresistance in topological semimetals and topological insulators by using the semiclassical equations of motion with the nontrivial Berry curvature. We show that the negative magnetoresistance can exist without the chiral anomaly. At strong magnetic fields, we establish theories for the quantum oscillations in topological Weyl, Dirac, and nodal-line semimetals. We propose a new mechanism of 3D quantum Hall effect, via the “wormhole” tunneling through the Weyl orbit formed by the Fermi arcs and Weyl nodes in topological semimetals. In the quantum limit at extremely strong magnetic fields, we find that an unexpected Hall resistance reversal can be understood in terms of the Weyl fermion annihilation. Additionally, in parallel magnetic fields, longitudinal resistance dips in the quantum limit can serve as signatures for topological insulators.

Keywords

topological semimetal / topological insulator / quantum oscillation / negative magnetoresistance / quantum Hall effect

Cite this article

Download citation ▾
Hai-Peng Sun, Hai-Zhou Lu. Quantum transport in topological semimetals under magnetic fields (II). Front. Phys., 2019, 14(3): 33405 https://doi.org/10.1007/s11467-019-0890-7

References

[1]
H.-Z. Lu and S.-Q. Shen, Quantum transport in topological semimetals under magnetic fields, Front. Phys.12, 127201 (2017)
CrossRef ADS Google scholar
[2]
H. Z. Lu and S. Q. Shen, Weak antilocalization and localization in disordered and interacting Weyl semimetals, Phys. Rev. B92, 035203 (2015)
CrossRef ADS Google scholar
[3]
X. Dai, H.-Z. Lu, S.-Q. Shen, and H. Yao, Detecting monopole charge in Weyl semimetals via quantum interference transport, Phys. Rev. B93, 161110(R) (2016)
CrossRef ADS Google scholar
[4]
H. Li, H. T. He, H. Z. Lu, H. C. Zhang, H. C. Liu, R. Ma, Z. Y. Fan, S. Q. Shen, and J. N. Wang, Negative magnetoresistance in Dirac semimetal Cd3As2, Nat. Commun.7, 10301 (2016)
CrossRef ADS Google scholar
[5]
H. Z. Lu, S. B. Zhang, and S. Q. Shen, High-field magnetoconductivity of topological semimetals with short-range potential, Phys. Rev. B92, 045203 (2015)
CrossRef ADS Google scholar
[6]
S.-B. Zhang, H.-Z. Lu, and S.-Q. Shen, Linear magnetoconductivity in an intrinsic topological Weyl semimetal, New J. Phys.18, 053039 (2016)
CrossRef ADS Google scholar
[7]
C. M. Wang, H.-P. Sun, H.-Z. Lu, and X. C. Xie, 3D quantum Hall effect of Fermi arcs in topological semimetals, Phys. Rev. Lett.119, 136806 (2017)
CrossRef ADS Google scholar
[8]
C. M. Wang, H.-Z. Lu, and S.-Q. Shen, Anomalous phase shift of quantum oscillations in 3D topological semimetals, Phys. Rev. Lett.117, 077201 (2016)
CrossRef ADS Google scholar
[9]
C. Li, C. M. Wang, B. Wan, X. Wan, H.-Z. Lu, and X. C. Xie, Rules for phase shifts of quantum oscillations in topological nodal-line semimetals, Phys. Rev. Lett.120, 146602 (2018)
CrossRef ADS Google scholar
[10]
X. Dai, Z. Z. Du, and H.-Z. Lu, Negative magnetoresistance without chiral anomaly in topological insulators, Phys. Rev. Lett.119, 166601 (2017)
CrossRef ADS Google scholar
[11]
C.-L. Zhang, , Magnetic-tunnelling-induced Weyl node annihilation in TaP, Nat. Phys.13, 979 (2017)
CrossRef ADS Google scholar
[12]
Y. Chen, H.-Z. Lu, and X. C. Xie, Forbidden backscattering and resistance dip in the quantum limit as a signature for topological insulators, Phys. Rev. Lett.121, 036602 (2018)
CrossRef ADS Google scholar
[13]
H. Weng, X. Dai, and Z. Fang, Topological semimetals predicted from first-principles calculations, J. Phys.: Condens. Matter28, 303001 (2016)
CrossRef ADS Google scholar
[14]
B. Yan and C. Felser, Topological materials: Weyl semimetals, Ann. Rev. Condens. Matter Phys.8, 337 (2017)
CrossRef ADS Google scholar
[15]
N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and Dirac semimetals in three-dimensional solids, Rev. Mod. Phys.90, 015001 (2018)
CrossRef ADS Google scholar
[16]
H. Wang and J. Wang, Electron transport in Dirac and Weyl semimetals, Chin. Phys. B27, 107402 (2018)
CrossRef ADS Google scholar
[17]
X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B83, 205101 (2011)
CrossRef ADS Google scholar
[18]
K. Y. Yang, Y. M. Lu, and Y. Ran, Quantum Hall effects in a Weyl semimetal: Possible application in pyrochlore iridates, Phys. Rev. B84, 075129 (2011)
CrossRef ADS Google scholar
[19]
A. A. Burkov and L. Balents, Weyl semimetal in a topological insulator multilayer, Phys. Rev. Lett.107, 127205 (2011)
CrossRef ADS Google scholar
[20]
G. Xu, H. M. Weng, Z. J. Wang, X. Dai, and Z. Fang, Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4, Phys. Rev. Lett.107, 186806 (2011)
CrossRef ADS Google scholar
[21]
P. Delplace, J. Li, and D. Carpentier, Topological Weyl semi-metal from a lattice model, EPL97, 67004 (2012)
CrossRef ADS Google scholar
[22]
J.-H. Jiang, Tunable topological Weyl semimetal from simple-cubic lattices with staggered fluxes, Phys. Rev. A85, 033640 (2012)
CrossRef ADS Google scholar
[23]
S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, Dirac semimetal in three dimensions, Phys. Rev. Lett.108, 140405 (2012)
CrossRef ADS Google scholar
[24]
Z. Wang, Y. Sun, X. Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, and Z. Fang, Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb), Phys. Rev. B85, 195320 (2012)
CrossRef ADS Google scholar
[25]
B. Singh, A. Sharma, H. Lin, M. Z. Hasan, R. Prasad, and A. Bansil, Topological electronic structure and Weyl semimetal in the TlBiSe2 class of semiconductors, Phys. Rev. B86, 115208 (2012)
CrossRef ADS Google scholar
[26]
Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Threedimensional Dirac semimetal and quantum transport in Cd3As2, Phys. Rev. B88, 125427 (2013)
CrossRef ADS Google scholar
[27]
J. Liu and D. Vanderbilt, Weyl semimetals from noncentrosymmetric topological insulators, Phys. Rev. B90, 155316 (2014)
CrossRef ADS Google scholar
[28]
D. Bulmash, C.-X. Liu, and X.-L. Qi, Prediction of a Weyl semimetal in HgCdMnTe, Phys. Rev. B89, 081106 (2014)
CrossRef ADS Google scholar
[29]
Z. K. Liu, , Discovery of a three-dimensional topological Dirac semimetal, Na3Bi, Science343, 864 (2014)
CrossRef ADS Google scholar
[30]
S. Y. Xu, , Observation of Fermi arc surface states in a topological metal, Science347, 294 (2015)
CrossRef ADS Google scholar
[31]
Z. K. Liu, , A stable three-dimensional topological Dirac semimetal Cd3As2, Nat. Mater.13, 677 (2014)
CrossRef ADS Google scholar
[32]
M. Neupane, , Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2, Nat. Commun.5, 3786 (2014)
CrossRef ADS Google scholar
[33]
S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Büchner, and R. J. Cava, Experimental realization of a three-dimensional Dirac semimetal, Phys. Rev. Lett.113, 027603 (2014)
CrossRef ADS Google scholar
[34]
H. Yi, , Evidence of topological surface state in three-dimensional Dirac semimetal Cd3As2, Sci. Rep.4, 6106 (2014)
CrossRef ADS Google scholar
[35]
C. Zhang, , Room-temperature chiral charge pumping in Dirac semimetals, Nat. Commun.8, 13741 (2017)
CrossRef ADS Google scholar
[36]
C. Z. Li, L. X. Wang, H. W. Liu, J. Wang, Z. M. Liao, and D. P. Yu, Giant negative magnetoresistance induced by the chiral anomaly in individual Cd3As2 nanowires, Nat. Commun.6, 10137 (2015)
CrossRef ADS Google scholar
[37]
S. M. Huang, , A Weyl fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class, Nat. Commun.6, 7373 (2015)
CrossRef ADS Google scholar
[38]
H. M. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides, Phys. Rev. X5, 011029 (2015)
CrossRef ADS Google scholar
[39]
B. Q. Lv, , Experimental discovery of Weyl semimetal TaAs, Phys. Rev. X5, 031013 (2015)
CrossRef ADS Google scholar
[40]
B. Q. Lv, , Observation of Weyl nodes in TaAs, Nat. Phys.11, 724 (2015)
CrossRef ADS Google scholar
[41]
B. Q. Lv, , Observation of Fermi-arc spin texture in TaAs, Phys. Rev. Lett.115, 217601 (2015)
CrossRef ADS Google scholar
[42]
S. Y. Xu, , Discovery of a Weyl fermion semimetal and topological Fermi arcs, Science349, 613 (2015)
CrossRef ADS Google scholar
[43]
L. X. Yang, , Weyl semimetal phase in the noncentrosymmetric compound TaAs, Nat. Phys.11, 728 (2015)
CrossRef ADS Google scholar
[44]
Z. K. Liu, , Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family, Nat. Mater.15, 27 (2015)
CrossRef ADS Google scholar
[45]
C. L. Zhang, , Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl Fermion semimetal, Nat. Commun.7, 10735 (2016)
CrossRef ADS Google scholar
[46]
X. C. Huang, , Observation of the chiralanomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs, Phys. Rev. X5, 031023 (2015)
CrossRef ADS Google scholar
[47]
S.-Y. Xu, , Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide, Nat. Phys.11, 748 (2015)
CrossRef ADS Google scholar
[48]
N. Xu, , Observation of Weyl nodes and Fermi arcs in tantalum phosphide, Nat. Commun.7, 11006 (2016)
CrossRef ADS Google scholar
[49]
S.-Y. Xu, , Spin polarization and texture of the Fermi arcs in the Weyl fermion semimetal TaAs, Phys. Rev. Lett.116, 096801 (2016)
[50]
I. Belopolski, , Criteria for directly detecting topological Fermi arcs in Weyl semimetals, Phys. Rev. Lett.116, 066802 (2016)
CrossRef ADS Google scholar
[51]
I. Belopolski, , Fermi arc electronic structure and Chern numbers in the type-II Weyl semimetal candidate MoxW1-xTe2, Phys. Rev. B94, 085127 (2016)
CrossRef ADS Google scholar
[52]
S.-Y. Xu, , Experimental discovery of a topological weyl semimetal state in tap, Sci. Adv.1, 10 (2015)
[53]
I. Belopolski, , Signatures of a time-reversal symmetric Weyl semimetal with only four Weyl points, Nat. Commun.8, 942 (2017)
CrossRef ADS Google scholar
[54]
S. Borisenko, D. Evtushinsky, Q. Gibson, A. Yaresko, T. Kim, M. N. Ali, B. Buechner, M. Hoesch, and R. J. Cava, Time-reversal symmetry breaking type-II Weyl state in YbMnBi2, arXiv: 1507.04847 (2015)
[55]
M. Hirschberger, S. Kushwaha, Z. Wang, Q. Gibson, S. Liang, C. Belvin, B. A. Bernevig, R. J. Cava, and N. P. Ong, The chiral anomaly and thermopower of Weyl fermions in the half-Heusler GdPtBi, Nat. Mater.15, 1161 (2016)
CrossRef ADS Google scholar
[56]
C. Felser and B. Yan, Weyl semimetals: Magnetically induced, Nat. Mater.15, 1149 (2016)
CrossRef ADS Google scholar
[57]
C. Shekhar, , Anomalous Hall effect in Weyl semimetal half-Heusler compounds RPtBi (R = Gd and Nd), Proc. Natl. Acad. Sci. USA115, 9140 (2018)
CrossRef ADS Google scholar
[58]
S.-Q. Shen, Topological Insulators, 2nd Ed., Springer-Verlag, Berlin Heidelberg, 2017
[59]
R. Okugawa and S. Murakami, Dispersion of Fermi arcs in Weyl semimetals and their evolutions to Dirac cones, Phys. Rev. B89, 235315 (2014)
CrossRef ADS Google scholar
[60]
H. Z. Lu, S. B. Zhang, and S. Q. Shen, High-field magnetoconductivity of topological semimetals with short-range potential, Phys. Rev. B92, 045203 (2015)
CrossRef ADS Google scholar
[61]
P. E. C. Ashby and J. P. Carbotte, Theory of magnetic oscillations in Weyl semimetals, Eur. Phys. J. B87 (2014)
CrossRef ADS Google scholar
[62]
E. V. Gorbar, V. A. Miransky, and I. A. Shovkovy, Chiral anomaly, dimensional reduction, and magnetoresistivity of Weyl and Dirac semimetals, Phys. Rev. B89, 085126 (2014)
CrossRef ADS Google scholar
[63]
H. Z. Lu, W. Y. Shan, W. Yao, Q. Niu, and S. Q. Shen, Massive Dirac fermions and spin physics in an ultrathin film of topological insulator, Phys. Rev. B81, 115407 (2010)
CrossRef ADS Google scholar
[64]
S. Jeon, B. B. Zhou, A. Gyenis, B. E. Feldman, I. Kimchi, A. C. Potter, Q. D. Gibson, R. J. Cava, A. Vishwanath, and A. Yazdani, Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2, Nat. Mater.13, 851 (2014)
CrossRef ADS Google scholar
[65]
A. A. Burkov, M. D. Hook, and L. Balents, Topological nodal semimetals, Phys. Rev. B84, 235126 (2011)
CrossRef ADS Google scholar
[66]
C.-K. Chiu and A. P. Schnyder, Classification of reflection-symmetry-protected topological semimetals and nodal superconductors, Phys. Rev. B90, 205136 (2014)
CrossRef ADS Google scholar
[67]
C. Fang, H. Weng, X. Dai, and Z. Fang, Topological nodal line semimetals, Chin. Phys. B25, 117106 (2016)
CrossRef ADS Google scholar
[68]
B.-J. Yang, T. A. Bojesen, T. Morimoto, and A. Furusaki, Topological semimetals protected by off-centered symmetries in nonsymmorphic crystals, Phys. Rev. B95, 075135 (2017)
CrossRef ADS Google scholar
[69]
Y. Chen, Y. Xie, S. A. Yang, H. Pan, F. Zhang, M. L. Cohen, and S. Zhang, Nanostructured carbon allotropes with Weyl-like loops and points, Nano Lett.15, 6974 (2015)
CrossRef ADS Google scholar
[70]
T. Bzdušek, Q. Wu, A. Rüegg, M. Sigrist, and A. A. Soluyanov, Nodal-chain metals, Nature538, 75 (2016)
CrossRef ADS Google scholar
[71]
X. Feng, C. Yue, Z. Song, Q. Wu, and B. Wen, Topological Dirac nodal-net fermions in AlB2-type TiB2 and ZrB2, Phys. Rev. Mater.2, 014202 (2018)
CrossRef ADS Google scholar
[72]
C.-J. Yi, , Observation of a nodal chain with Dirac surface states in TiB2, Phys. Rev. B97, 201107 (2018)
CrossRef ADS Google scholar
[73]
W. Chen, K. Luo, L. Li, and O. Zilberberg, Proposal for detecting nodal-line semimetal surface states with resonant spin-flipped reflection, Phys. Rev. Lett.121, 166802 (2018)
CrossRef ADS Google scholar
[74]
Z. Zhu, , Quasiparticle interference and nonsymmorphic effect on a floating band surface state of ZrSiSe, Nat. Commun.9, 4153 (2018)
CrossRef ADS Google scholar
[75]
W. Chen and J. L. Lado, Interaction driven surface Chern insulator in nodal line semimetals, arXiv: 1807.06916 (2018)
CrossRef ADS Google scholar
[76]
H. Weng, Y. Liang, Q. Xu, R. Yu, Z. Fang, X. Dai, and Y. Kawazoe, Topological node-line semimetal in threedimensional graphene networks, Phys. Rev. B92, 045108 (2015)
CrossRef ADS Google scholar
[77]
R. Yu, H. Weng, Z. Fang, X. Dai, and X. Hu, Topological node-line semimetal and Dirac semimetal state in antiperovskite Cu3PdN, Phys. Rev. Lett.115, 036807 (2015)
CrossRef ADS Google scholar
[78]
Y. Kim, B. J. Wieder, C. L. Kane, and A. M. Rappe, Dirac line nodes in inversion-symmetric crystals, Phys. Rev. Lett.115, 036806 (2015)
CrossRef ADS Google scholar
[79]
C. Fang, Y. Chen, H.-Y. Kee, and L. Fu, Topological nodal line semimetals with and without spin-orbital coupling, Phys. Rev. B92, 081201 (2015)
CrossRef ADS Google scholar
[80]
Y. Chen, Y.-M. Lu, and H.-Y. Kee, Topological crystalline metal in orthorhombic perovskite iridates, Nat. Commun.6, 6593 (2015)
CrossRef ADS Google scholar
[81]
G. Bian, , Drumhead surface states and topological nodal-line fermions in TlTaSe2, Phys. Rev. B93, 121113 (2016)
CrossRef ADS Google scholar
[82]
L. S. Xie, L. M. Schoop, E. M. Seibel, Q. D. Gibson, W. Xie, and R. J. Cava, A new form of Ca3P2 with a ring of Dirac nodes, APL Mater.3, 083602 (2015)
CrossRef ADS Google scholar
[83]
Y.-H. Chan, C.-K. Chiu, M. Y. Chou, and A. P. Schnyder, Ca3P2 and other topological semimetals with line nodes and drumhead surface states, Phys. Rev. B93, 205132 (2016)
CrossRef ADS Google scholar
[84]
Y. Du, F. Tang, D. Wang, L. Sheng, E.-j. Kan, C.-G. Duan, S. Y. Savrasov, and X. Wan, CaTe: A new topological node-line and Dirac semimetal, npj Quantum Mater.2, 3 (2017)
CrossRef ADS Google scholar
[85]
J. Zhao, R. Yu, H. Weng, and Z. Fang, Topological nodeline semimetal in compressed black phosphorus, Phys. Rev. B94, 195104 (2016)
CrossRef ADS Google scholar
[86]
A. Yamakage, Y. Yamakawa, Y. Tanaka, and Y. Okamoto, Line-node Dirac semimetal and topological insulating phase in noncentrosymmetric pnictides CaAgX (X= P, As), J. Phys. Soc. Japan85, 013708 (2015)
CrossRef ADS Google scholar
[87]
Q. Xu, R. Yu, Z. Fang, X. Dai, and H. Weng, Topological nodal line semimetals in the CaP3 family of materials, Phys.Rev. B95, 045136 (2017)
CrossRef ADS Google scholar
[88]
Y.-J. Jin, R. Wang, J.-Z. Zhao, Y.-P. Du, C.-D. Zheng, L.-Y. Gan, J.-F. Liu, H. Xu, and S. Tong, The prediction of a family group of two-dimensional node-line semimetals, Nanoscale9, 13112 (2017)
CrossRef ADS Google scholar
[89]
Z. Zhu, M. Li, and J. Li, Topological semimetal to insulator quantum phase transition in the Zintl compounds Ba2X (X=Si,Ge), Phys. Rev. B94, 155121 (2016)
CrossRef ADS Google scholar
[90]
Q.-F. Liang, J. Zhou, R. Yu, Z. Wang, and H. Weng, Node-surface and node-line fermions from nonsymmorphic lattice symmetries, Phys. Rev. B93, 085427 (2016)
CrossRef ADS Google scholar
[91]
M. Zeng, C. Fang, G. Chang, Y.-A. Chen, T. Hsieh, A. Bansil, H. Lin, and L. Fu, Topological semimetals and topological insulators in rare earth monopnictides, arXiv: 1504.03492 (2015)
[92]
M. Hirayama, R. Okugawa, T. Miyake, and S. Murakami, Topological Dirac nodal lines and surface charges in fcc alkaline earth metals, Nat Commun.8, 14022 (2017)
CrossRef ADS Google scholar
[93]
H. Huang, J. Liu, D. Vanderbilt, and W. Duan, Topological nodal-line semimetals in alkaline-earth stannides, germanides, and silicides, Phys. Rev. B93, 201114 (2016)
CrossRef ADS Google scholar
[94]
R. Li, H. Ma, X. Cheng, S. Wang, D. Li, Z. Zhang, Y. Li, and X.-Q. Chen, Dirac node lines in pure alkali earth metals, Phys. Rev. Lett.117, 096401 (2016)
CrossRef ADS Google scholar
[95]
J.-T. Wang, H. Weng, S. Nie, Z. Fang, Y. Kawazoe, and C. Chen, Body-centered orthorhombic C16: A novel topological node-line semimetal, Phys. Rev. Lett.116, 195501 (2016)
CrossRef ADS Google scholar
[96]
Y. Sun, Y. Zhang, C.-X. Liu, C. Felser, and B. Yan, Dirac nodal lines and induced spin Hall effect in metallic rutile oxides, Phys. Rev. B95, 235104 (2017)
CrossRef ADS Google scholar
[97]
L. M. Schoop, M. N. Ali, C. Straßer, A. Topp, A. Varykhalov, D. Marchenko, V. Duppel, S. S. P. Parkin, B. V. Lotsch, and C. R. Ast, Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS, Nat. Commun.7, 11696 (2016)
CrossRef ADS Google scholar
[98]
M. Neupane, , Observation of topological nodal fermion semimetal phase in ZrSiS, Phys. Rev. B93, 201104 (2016)
CrossRef ADS Google scholar
[99]
C. Chen, , Dirac line nodes and effect of spin-orbit coupling in the nonsymmorphic critical semimetals MSiS (M=Hf,Zr), Phys. Rev. B95, 125126 (2017)
CrossRef ADS Google scholar
[100]
G. Bian, , Topological nodal-line fermions in spinorbit metal PbTaSe2, Nat. Commun.7, 10556 (2016)
CrossRef ADS Google scholar
[101]
T.-R. Chang, , Topological Dirac surface states and superconducting pairing correlations in PbTaSe2, Phys. Rev. B93, 245130 (2016)
CrossRef ADS Google scholar
[102]
S. A. Ekahana, , Observation of nodal line in nonsymmorphic topological semimetal InBi, New J. Phys.19, 065007 (2017)
CrossRef ADS Google scholar
[103]
Y. Wu, L.-L. Wang, E. Mun, D. D. Johnson, D. Mou, L. Huang, Y. Lee, S. L. Bud’ko, P. C. Canfield, and A. Kaminski, Dirac node arcs in PtSn4, Nat. Phys.12, 667 (2016)
CrossRef ADS Google scholar
[104]
A. Alexandradinata and L. Glazman, Semiclassical theory of Landau levels and magnetic breakdown in topological metals, Phys. Rev. B97, 144422 (2018)
CrossRef ADS Google scholar
[105]
H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nat. Phys.5, 438 (2009)
CrossRef ADS Google scholar
[106]
I. A. Nechaev and E. E. Krasovskii, Relativistic k·p Hamiltonians for centrosymmetric topological insulators from ab initio wave functions, Phys. Rev. B94, 201410 (2016)
CrossRef ADS Google scholar
[107]
W.-Y. Shan, H.-Z. Lu, and S.-Q. Shen, Effective continuous model for surface states and thin films of threedimensional topological insulators, New J. Phys.12, 043048 (2010)
CrossRef ADS Google scholar
[108]
Y. Zhang, , Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit, Nat. Phys.6, 584 (2010)
CrossRef ADS Google scholar
[109]
J. Wang, , Anomalous anisotropic magnetoresistance in topological insulator films, Nano Res.5, 739 (2012)
CrossRef ADS Google scholar
[110]
H. T. He, H. C. Liu, B. K. Li, X. Guo, Z. J. Xu, M. H. Xie, and J. N. Wang, Disorder-induced linear magnetoresistance in (221) topological insulator Bi2Se3 films, Appl. Phys. Lett.103, 031606 (2013)
CrossRef ADS Google scholar
[111]
S. Wiedmann, , Anisotropic and strong negative magnetoresistance in the three-dimensional topological insulator Bi2Se3, Phys. Rev. B94, 081302 (2016)
CrossRef ADS Google scholar
[112]
L.-X. Wang, Y. Yan, L. Zhang, Z.-M. Liao, H.-C. Wu, and D.-P. Yu, Zeeman effect on surface electron transport in topological insulator Bi2Se3 nanoribbons, Nanoscale7, 16687 (2015)
CrossRef ADS Google scholar
[113]
S. L. Adler, Axial-vector vertex in spinor electrodynamics, Phys. Rev.177, 2426 (1969)
CrossRef ADS Google scholar
[114]
J. S. Bell and R. Jackiw, A PCAC puzzle: π0→γγ in the σ-model, Il Nuovo Cimento A60, 47 (1969)
CrossRef ADS Google scholar
[115]
H. B. Nielsen and M. Ninomiya, Absence of neutrinos on a lattice (i): Proof by homotopy theory, Nucl. Phys. B185, 20 (1981)
CrossRef ADS Google scholar
[116]
H. J. Kim, K. S. Kim, J. F. Wang, M. Sasaki, N. Satoh, A. Ohnishi, M. Kitaura, M. Yang, and L. Li, Dirac versus Weyl fermions in topological insulators: Adler-Bell-Jackiw anomaly in transport phenomena, Phys. Rev. Lett.111, 246603 (2013)
CrossRef ADS Google scholar
[117]
K.-S. Kim, H.-J. Kim, and M. Sasaki, Boltzmann equation approach to anomalous transport in a Weyl metal, Phys. Rev. B89, 195137 (2014)
CrossRef ADS Google scholar
[118]
Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosic, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, and T. Valla, Chiral magnetic effect in ZrTe5, Nat. Phys.12, 550 (2016)
CrossRef ADS Google scholar
[119]
J. Xiong, S. K. Kushwaha, T. Liang, J. W. Krizan, M. Hirschberger, W. Wang, R. J. Cava, and N. P. Ong, Evidence for the chiral anomaly in the Dirac semimetal Na3Bi, Science350, 413 (2015)
CrossRef ADS Google scholar
[120]
F. Arnold, , Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP, Nat. Commun.7, 11615 (2016)
CrossRef ADS Google scholar
[121]
X. J. Yang, Y. P. Liu, Z. Wang, Y. Zheng, and Z. A. Xu, Chiral anomaly induced negative magnetoresistance in topological Weyl semimetal NbAs, arXiv: 1506.03190 (2015)
[122]
X. Yang, Y. Li, Z. Wang, Y. Zhen, and Z.-A. Xu, Observation of negative magnetoresistance and nontrivial π Berry’s phase in 3D Weyl semi-metal NbAs, arXiv: 1506.02283 (2015)
[123]
H. Wang, , Chiral anomaly and ultrahigh mobility in crystalline HfTe5, Phys. Rev. B93, 165127 (2016)
CrossRef ADS Google scholar
[124]
O. Breunig, Z. Wang, A. A. Taskin, J. Lux, A. Rosch, and Y. Ando, Gigantic negative magnetoresistance in the bulk of a disordered topological insulator, Nat. Commun.8, 15545 (2017)
CrossRef ADS Google scholar
[125]
B. A. Assaf, , Negative longitudinal magnetoresistance from the anomalous N = 0 Landau level in topological materials, Phys. Rev. Lett.119, 106602 (2017)
CrossRef ADS Google scholar
[126]
M. Zhang, , Topological phase transition-induced triaxial vector magnetoresistance in (Bi1-xInx)2Se3 nanodevices, ACS Nano12, 1537 (2018)
CrossRef ADS Google scholar
[127]
C. Fleckenstein, N. Traverso Ziani, and B. Trauzettel, Chiral anomaly in real space from stable fractional charges at the edge of a quantum spin hall insulator, Phys. Rev. B94, 241406 (2016)
CrossRef ADS Google scholar
[128]
A. Wolos, , g-factors of conduction electrons and holes in Bi2Se3 three-dimensional topological insulator, Phys. Rev. B93, 155114 (2016)
CrossRef ADS Google scholar
[129]
D. Culcer, Transport in three-dimensional topological insulators: Theory and experiment, Physica E44, 860 (2012)
CrossRef ADS Google scholar
[130]
G. Sundaram and Q. Niu, Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects, Phys. Rev. B59, 14915 (1999)
CrossRef ADS Google scholar
[131]
D. Xiao, M. C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys.82, 1959 (2010)
CrossRef ADS Google scholar
[132]
G. D. Mahan, Many-Particle Physics, Plenum Press, 1990
CrossRef ADS Google scholar
[133]
D. T. Son and B. Z. Spivak, Chiral anomaly and classical negative magnetoresistance of Weyl metals, Phys. Rev. B88, 104412 (2013)
CrossRef ADS Google scholar
[134]
S.-K. Yip, Kinetic equation and magneto-conductance for Weyl metal in the clean limit, arXiv: 1508.01010 (2015)
[135]
A. A. Burkov, Chiral anomaly and diffusive magnetotransport in Weyl metals, Phys. Rev. Lett.113, 247203 (2014)
CrossRef ADS Google scholar
[136]
S. Mao, A. Yamakage, and Y. Kuramoto, Tight-binding model for topological insulators: Analysis of helical surface modes over the whole Brillouin zone, Phys. Rev. B84, 115413 (2011)
CrossRef ADS Google scholar
[137]
J. G. Checkelsky, Y. S. Hor, M.-H. Liu, D.-X. Qu, R. J. Cava, and N. P. Ong, Quantum interference in macroscopic crystals of nonmetallic Bi2Se3, Phys. Rev. Lett.103, 246601 (2009)
CrossRef ADS Google scholar
[138]
J.Chen, , Gate-voltage control of chemical potential and weak antilocalization in Bi2Se3, Phys. Rev. Lett.105, 176602 (2010)
CrossRef ADS Google scholar
[139]
J. Wang, A. M. DaSilva, C.-Z. Chang, K. He, J. K. Jain, N. Samarth, X.-C. Ma, Q.-K. Xue, and M. H. W. Chan, Evidence for electron-electron interaction in topological insulator thin films, Phys. Rev. B83, 245438 (2011)
CrossRef ADS Google scholar
[140]
H.-T. He, G. Wang, T. Zhang, I.-K. Sou, G. K. L. Wong, J.-N. Wang, H.-Z. Lu, S.-Q. Shen, and F.-C. Zhang, Impurity effect on weak antilocalization in the topological insulator Bi2Te3, Phys. Rev. Lett.106, 166805 (2011)
CrossRef ADS Google scholar
[141]
H. Köhler and E. Wöchner, The g-factor of the conduction electrons in Bi2Se3, physica status solidi (b)67, 665 (1975)
CrossRef ADS Google scholar
[142]
A. Srinivasan, K. L. Hudson, D. Miserev, L. A. Yeoh, O. Klochan, K. Muraki, Y. Hirayama, O. P. Sushkov, and A. R. Hamilton, Electrical control of the sign of the g factor in a GaAs hole quantum point contact, Phys. Rev. B94, 041406 (2016)
CrossRef ADS Google scholar
[143]
T. Morimoto, S. Zhong, J. Orenstein, and J. E. Moore, Semiclassical theory of nonlinear magneto-optical responses with applications to topological Dirac/Weyl semimetals, Phys. Rev. B94, 245121 (2016)
CrossRef ADS Google scholar
[144]
Y. Gao, S. A. Yang, and Q. Niu, Intrinsic relative magnetoconductivity of nonmagnetic metals, Phys. Rev. B95, 165135 (2017)
CrossRef ADS Google scholar
[145]
Y. Gao, S. A. Yang, and Q. Niu, Field induced positional shift of Bloch electrons and its dynamical implications, Phys. Rev. Lett.112, 166601 (2014)
CrossRef ADS Google scholar
[146]
Y. Gao, S. A. Yang, and Q. Niu, Geometrical effects in orbital magnetic susceptibility, Phys. Rev. B91, 214405 (2015)
CrossRef ADS Google scholar
[147]
P. Goswami, J. H. Pixley, and S. Das Sarma, Axial anomaly and longitudinal magnetoresistance of a generic three-dimensional metal, Phys. Rev. B92, 075205 (2015)
CrossRef ADS Google scholar
[148]
R. D. dos Reis, M. O. Ajeesh, N. Kumar, F. Arnold, C. Shekhar, M. Naumann, M. Schmidt, M. Nicklas, and E. Hassinger, On the search for the chiral anomaly in Weyl semimetals: the negative longitudinal magnetoresistance, New J. Phys.18, 085006 (2016)
CrossRef ADS Google scholar
[149]
A. V. Andreev and B. Z. Spivak, Longitudinal negative magnetoresistance and magnetotransport phenomena in conventional and topological conductors, Phys. Rev. Lett.120, 026601 (2018)
CrossRef ADS Google scholar
[150]
H. Ishizuka and N. Nagaosa, Robustness of anomalyrelated magnetoresistance in doped Weyl semimetals, arXiv: 1808.09093 (2018)
[151]
D. Shoenberg, Magnetic Oscillations in Metals, Cambridge University Press, 1984
CrossRef ADS Google scholar
[152]
G. P. Mikitik and Y. V. Sharlai, Manifestation of Berry’s phase in metal physics, Phys. Rev. Lett.82, 2147 (1999)
CrossRef ADS Google scholar
[153]
I. M. Lifshitz and A. M. Kosevich, Theory of magnetic susceptibility in metals at low temperatures, Sov. Phys. JETP2, 636 (1956)
[154]
D. Shoenberg, The Fermi surfaces of copper, silver and gold. I. the de Haas–van Alphen effect, Phil. Trans. R. Soc. Lond. A255, 85 (1962)
CrossRef ADS Google scholar
[155]
P. T. Coleridge and I. M. Templeton, High precision de Haas–van Alphen measurements in the noble metals, J. Phys. F: Metal Phys.2, 643 (1972)
CrossRef ADS Google scholar
[156]
I. A. Luk’yanchuk and Y. Kopelevich, Phase analysis of quantum oscillations in graphite, Phys. Rev. Lett.93, 166402 (2004)
CrossRef ADS Google scholar
[157]
G. E. Volovik, The Universe in a Helium Droplet, Clarendon Press, Oxford, 2003
[158]
Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature438, 201 (2005)
CrossRef ADS Google scholar
[159]
H. Murakawa, M. S. Bahramy, M. Tokunaga, Y. Kohama, C. Bell, Y. Kaneko, N. Nagaosa, H. Y. Hwang, and Y. Tokura, Detection of Berry’s phase in a bulk Rashba semiconductor, Science342, 1490 (2013)
CrossRef ADS Google scholar
[160]
L. P. He, X. C. Hong, J. K. Dong, J. Pan, Z. Zhang, J. Zhang, and S. Y. Li, Quantum transport evidence for the three-dimensional Dirac semimetal phase in Cd3As2, Phys. Rev. Lett.113, 246402 (2014)`
CrossRef ADS Google scholar
[161]
M. Novak, S. Sasaki, K. Segawa, and Y. Ando, Large linear magnetoresistance in the Dirac semimetal TlBiSSe, Phys. Rev. B91, 041203(R) (2015)
CrossRef ADS Google scholar
[162]
Y. F. Zhao, , Anisotropic Fermi surface and quantum limit transport in high mobility three-dimensional Dirac semimetal Cd3As2, Phys. Rev. X5, 031037 (2015)
CrossRef ADS Google scholar
[163]
J. Du, , Large unsaturated positive and negative magnetoresistance in Weyl semimetal TaP, Sci. China-Phys. Mech. Astron.59, 657406 (2016)
CrossRef ADS Google scholar
[164]
Z. Wang, , Helicity-protected ultrahigh mobility Weyl fermions in NbP, Phys. Rev. B93, 121112(R) (2016)
CrossRef ADS Google scholar
[165]
J. Cao, , Landau level splitting in Cd3As2 under high magnetic fields, Nat. Commun.6, 7779 (2015)
CrossRef ADS Google scholar
[166]
C. Zhang, Z. Yuan, S. Xu, Z. Lin, B. Tong, M. Z. Hasan, J. Wang, C. Zhang, and S. Jia, Tantalum monoarsenide: an exotic compensated semimetal, arXiv: 1502.00251 (2015)
[167]
A. Narayanan, , Linear magnetoresistance caused by mobility fluctuations in n-doped Cd3As2, Phys. Rev. Lett.114, 117201 (2015)
CrossRef ADS Google scholar
[168]
J. Park, , Anisotropic Dirac Fermions in a Bi square net of SrMnBi2, Phys. Rev. Lett.107, 126402 (2011)
CrossRef ADS Google scholar
[169]
F.-X. Xiang, X.-L. Wang, M. Veldhorst, S.-X. Dou, and M. S. Fuhrer, Observation of topological transition of Fermi surface from a spindle torus to a torus in bulk Rashba spin-split BiTeCl, Phys. Rev. B92, 035123 (2015)
CrossRef ADS Google scholar
[170]
F. F. Tafti, Q. D. Gibson, S. K. Kushwaha, N. Haldolaarachchige, and R. J. Cava, Resistivity plateau and extreme magnetoresistance in LaSb, Nat. Phys.12, 272 (2016)
CrossRef ADS Google scholar
[171]
Y. Luo, N. J. Ghimire, M. Wartenbe, H. Choi, M. Neupane, R. D. McDonald, E. D. Bauer, J. Zhu, J. D. Thompson, and F. Ronning, Electron–hole compensation effect between topologically trivial electrons and nontrivial holes in NbAs, Phys. Rev. B92, 205134 (2015)
CrossRef ADS Google scholar
[172]
F. Arnold, M. Naumann, S.-C. Wu, Y. Sun, M. Schmidt, H. Borrmann, C. Felser, B. Yan, and E. Hassinger, Chiral Weyl pockets and Fermi surface topology of the Weyl semimetal TaAs, Phys. Rev. Lett.117, 146401 (2016)
CrossRef ADS Google scholar
[173]
J. Klotz, , Quantum oscillations and the Fermi surface topology of the Weyl semimetal NbP, Phys. Rev. B93, 121105 (2016)
CrossRef ADS Google scholar
[174]
R. D. dos Reis, S. C. Wu, Y. Sun, M. O. Ajeesh, C. Shekhar, M. Schmidt, C. Felser, B. Yan, and M. Nicklas, Pressure tuning the Fermi surface topology of the Weyl semimetal NbP, Phys. Rev. B93, 205102 (2016)
CrossRef ADS Google scholar
[175]
P. Sergelius, , Berry phase and band structure analysis of the Weyl semimetal NbP, Sci. Rep.6, 33859 (2016)
CrossRef ADS Google scholar
[176]
N. Kumar, K. Manna, Y. Qi, S.-C. Wu, L. Wang, B. Yan, C. Felser, and C. Shekhar, Unusual magnetotransport from Si-square nets in topological semimetal HfSiS, Phys. Rev. B95, 121109 (2017)
CrossRef ADS Google scholar
[177]
R. Singha, A. K. Pariari, B. Satpati, and P. Mandal, Large nonsaturating magnetoresistance and signature of nondegenerate Dirac nodes in ZrSiS, Proc. Natl. Acad. Sci. USA114, 2468 (2017)
CrossRef ADS Google scholar
[178]
M. N. Ali, L. M. Schoop, C. Garg, J. M. Lippmann, E. Lara, B. Lotsch, and S. S. P. Parkin, Butterfly magnetoresistance, quasi-2D Dirac Fermi surface and topological phase transition in ZrSiS, Sci. Adv.2, e1601742 (2016)
CrossRef ADS Google scholar
[179]
X. Wang, , Evidence of both surface and bulk Dirac bands and anisotropic nonsaturating magnetoresistance in ZrSiS, Adv. Electron. Mater.2, 1600228 (2016)
CrossRef ADS Google scholar
[180]
Y.-Y. Lv, B.-B. Zhang, X. Li, S.-H. Yao, Y. B. Chen, J. Zhou, S.-T. Zhang, M.-H. Lu, and Y.-F. Chen, Extremely large and significantly anisotropic magnetoresistance in ZrSiS single crystals, App. Phys. Lett.108, 244101 (2016)
CrossRef ADS Google scholar
[181]
J. Hu, Z. Tang, J. Liu, Y. Zhu, J. Wei, and Z. Mao, Nearly massless Dirac fermions and strong Zeeman splitting in the nodal-line semimetal ZrSiS probed by de Haas–van Alphen quantum oscillations, Phys. Rev. B96, 045127 (2017)
CrossRef ADS Google scholar
[182]
H. Pan, , Three-dimensional anisotropic magnetoresistance in the Dirac node-line material ZrSiSe, Sci. Rep.8, 9340 (2018)
CrossRef ADS Google scholar
[183]
J. Hu, , Evidence of topological nodal-line fermions in ZrSiSe and ZrSiTe, Phys. Rev. Lett. 117, 016602 (2016)
CrossRef ADS Google scholar
[184]
J. Hu, Y. L. Zhu, D. Graf, Z. J. Tang, J. Y. Liu, and Z. Q. Mao, Quantum oscillation studies of the topological semimetal candidate ZrGeM (M=S, Se, Te), Phys. Rev. B95, 205134 (2017)
CrossRef ADS Google scholar
[185]
M. Charbonneau, K. M. van Vliet, and P. Vasilopoulos, Linear response theory revisited III: One-body response formulas and generalized Boltzmann equations, J. Math. Phys.23, 318 (1982)
CrossRef ADS Google scholar
[186]
P. Vasilopoulos and C. Van Vliet, Linear response theory revisited (IV): Applications, J. Math. Phys.25, 1391 (1984)
CrossRef ADS Google scholar
[187]
C. M. Wang and X. L. Lei, Linear magnetoresistance on the topological surface, Phys. Rev. B86, 035442 (2012)
CrossRef ADS Google scholar
[188]
C. M. Wang and X. L. Lei, Linear magnetotransport in monolayer MoS2, Phys. Rev. B92, 125303 (2015)
CrossRef ADS Google scholar
[189]
D.-X. Qu, Y. S. Hor, J. Xiong, R. J. Cava, and N. P. Ong, Quantum oscillations and hall anomaly of surface states in the topological insulator Bi2Te3, Science329, 821 (2010)
CrossRef ADS Google scholar
[190]
S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge University Press, 1997
[191]
F. T. Vasko and O. E. Raichev, Quantum Kinetic Theory and Applications: Electrons, Photons, Phonons, Springer Science & Business Media, 2006
[192]
A. A. Abrikosov, Quantum magnetoresistance, Phys. Rev. B58, 2788 (1998)
CrossRef ADS Google scholar
[193]
J. Xiong, S. Kushwaha, J. Krizan, T. Liang, R. J. Cava, and N. P. Ong, Anomalous conductivity tensor in the Dirac semimetal Na3Bi, EPL114, 27002 (2016)
CrossRef ADS Google scholar
[194]
J. Hu, , π Berry phase and Zeeman splitting of TaP probed by high field magnetotransport measurements, Sci. Rep.6, 18674 (2016)
CrossRef ADS Google scholar
[195]
L. Onsager, Interpretation of the de Haas–van Alphen effect, Philos. Mag.43, 1006 (1952)
CrossRef ADS Google scholar
[196]
M. Phillips and V. Aji, Tunable line node semimetals, Phys. Rev. B90, 115111 (2014)
CrossRef ADS Google scholar
[197]
W. Chen, H.-Z. Lu, and O. Zilberberg, Weak localization and antilocalization in nodal-line semimetals: Dimensionality and topological effects, arXiv: 1902.06921 (2019)
[198]
K. v. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett.45, 494 (1980)
CrossRef ADS Google scholar
[199]
D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall conductance in a twodimensional periodic potential, Phys. Rev. Lett.49, 405 (1982)
CrossRef ADS Google scholar
[200]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature438, 197 (2005)
CrossRef ADS Google scholar
[201]
Y. Xu, I. Miotkowski, C. Liu, J. Tian, H. Nam, N. Alidoust, J. Hu, C.-K. Shih, M. Z. Hasan, and Y. P. Chen, Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator, Nat. Phys.10, 956 (2014)
CrossRef ADS Google scholar
[202]
R. Yoshimi, K. Yasuda, A. Tsukazaki, K. S. Takahashi, N. Nagaosa, M. Kawasaki, and Y. Tokura, Quantum Hall states stabilized in semi-magnetic bilayers of topological insulators, Nat. Commun.6, 8530 (2015)
CrossRef ADS Google scholar
[203]
M. Brahlek, N. Bansal, N. Koirala, S. Y. Xu, M. Neupane, C. Liu, M. Z. Hasan, and S. Oh, Topological-metal to band-insulator transition in (Bi1-xInx)2Se3 thin films, Phys. Rev. Lett.109, 186403 (2012)
CrossRef ADS Google scholar
[204]
L. Wu, M. Brahlek, R. Valdes Aquilar, A. V. Stier, C. M. Morris, Y. Lubashevsky, L. S. Bilbro, N. Bansal, S. Oh, and N. P. Armitage, A sudden collapse in the transport lifetime across the topological phase transition in (Bi1-xInx)2Se3, Nat. Phys.9, 410 (2013)
CrossRef ADS Google scholar
[205]
P. Hosur, Friedel oscillations due to Fermi arcs in Weyl semimetals, Phys. Rev. B86, 195102 (2012)
CrossRef ADS Google scholar
[206]
Y. Baum, E. Berg, S. A. Parameswaran, and A. Stern, Current at a distance and resonant transparency in Weyl semimetals, Phys. Rev. X5, 041046 (2015)
CrossRef ADS Google scholar
[207]
E. V. Gorbar, V. A. Miransky, I. A. Shovkovy, and P. O. Sukhachov, Origin of dissipative Fermi arc transport in Weyl semimetals, Phys. Rev. B93, 235127 (2016)
CrossRef ADS Google scholar
[208]
Y. Ominato and M. Koshino, Magnetotransport in Weyl semimetals in the quantum limit: Role of topological surface states, Phys. Rev. B93, 245304 (2016)
CrossRef ADS Google scholar
[209]
T. M. McCormick, S. J. Watzman, J. P. Heremans, and N. Trivedi, Fermi arc mediated entropy transport in topological semimetals, Phys. Rev. B97, 195152 (2018)
CrossRef ADS Google scholar
[210]
C. Shekhar, , Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal NbP, Nat. Phys.11, 645 (2015)
CrossRef ADS Google scholar
[211]
T. Liang, Q. Gibson, M. N. Ali, M. H. Liu, R. J. Cava, and N. P. Ong, Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2, Nat. Mater.14, 280 (2015)
CrossRef ADS Google scholar
[212]
P. J. W. Moll, N. L. Nair, T. Helm, A. C. Potter, I. Kimchi, A. Vishwanath, and J. G. Analytis, Transport evidence for Fermi-arc-mediated chirality transfer in the Dirac semimetal Cd3As2, Nature535, 266 (2016)
CrossRef ADS Google scholar
[213]
G. Rosenberg, H.-M. Guo, and M. Franz, Wormhole effect in a strong topological insulator, Phys. Rev. B82, 041104 (2010)
CrossRef ADS Google scholar
[214]
J. Ruan, S.-K. Jian, H. Yao, H. Zhang, S.-C. Zhang, and D. Xing, Symmetry-protected ideal Weyl semimetal in HgTe-class materials, Nat. Commun.7, 11136 (2016)
CrossRef ADS Google scholar
[215]
A. C. Potter, I. Kimchi, and A. Vishwanath, Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals, Nat. Commun.5, 5161 (2014)
CrossRef ADS Google scholar
[216]
M. Uchida, , Quantum Hall effect in Cd3As2 films, APS March Meeting A44.00005 (2017)
[217]
M. Uchida, , Quantum Hall states observed in thin films of Dirac semimetal Cd3As2, Nat. Commun8, 2274 (2017)
CrossRef ADS Google scholar
[218]
T. Schumann, L. Galletti, D. A. Kealhofer, H. Kim, M. Goyal, and S. Stemmer, Observation of the quantum Hall effect in confined films of the three-dimensional Dirac semimetal Cd3As2, Phys. Rev. Lett.120, 016801 (2018)
CrossRef ADS Google scholar
[219]
C. Zhang, , Quantum Hall effect based on Weyl orbit in Cd3As2, Nature565, 331 (2019)
CrossRef ADS Google scholar
[220]
V. P. Gusynin and S. G. Sharapov, Unconventional integer quantum Hall effect in graphene, Phys. Rev. Lett.95, 146801 (2005)
CrossRef ADS Google scholar
[221]
A. A. Zyuzin and A. A. Burkov, Thin topological insulator film in a perpendicular magnetic field, Phys. Rev. B83, 195413 (2011)
CrossRef ADS Google scholar
[222]
S. B. Zhang, Y. Y. Zhang, and S. Q. Shen, Robustness of quantum spin Hall effect in an external magnetic field, Phys. Rev. B90, 115305 (2014)
CrossRef ADS Google scholar
[223]
S. B. Zhang, H. Z. Lu, and S. Q. Shen, Edge states and integer quantum Hall effect in topological insulator thin films, Sci. Rep.5, 13277 (2015)
CrossRef ADS Google scholar
[224]
A. Pertsova, C. M. Canali, and A. H. MacDonald, Quantum Hall edge states in topological insulator nanoribbons, Phys. Rev. B94, 121409 (2016)
CrossRef ADS Google scholar
[225]
H. Zheng, , Atomic-scale visualization of quantum interference on a Weyl semimetal surface by scanning tunneling microscopy, ACS Nano10, 1378 (2016)
CrossRef ADS Google scholar
[226]
E. Y. Ma, , Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry, Nat. Commun.6, 7252 (2015)
CrossRef ADS Google scholar
[227]
M. Kargarian, M. Randeria, and Y.-M. Lu, Are the surface Fermi arcs in Dirac semimetals topologically protected? Proc. Natl. Acad. Sci. USA113, 8648 (2016)
CrossRef ADS Google scholar
[228]
J. Cano, B. Bradlyn, Z. Wang, M. Hirschberger, N. P. Ong, and B. A. Bernevig, Chiral anomaly factory: Creating Weyl fermions with a magnetic field, Phys. Rev. B95, 161306 (2017)
CrossRef ADS Google scholar
[229]
S. Q. Shen, M. Ma, X. C. Xie, and F. C. Zhang, Resonant spin Hall conductance in two-dimensional electron systems with a Rashba interaction in a perpendicular magnetic field, Phys. Rev. Lett.92, 256603 (2004)
CrossRef ADS Google scholar
[230]
M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys.82, 3045 (2010)
CrossRef ADS Google scholar
[231]
X.-L. Qi and S.-C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys.83, 1057 (2011)
CrossRef ADS Google scholar
[232]
R. Yu, W. Zhang, H.-J. Zhang, S.-C. Zhang, X. Dai, and Z. Fang, Quantized anomalous Hall effect in magnetic topological insulators, Science329, 61 (2010)
CrossRef ADS Google scholar
[233]
C.-Z. Chang, , Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator, Science340, 167 (2013)
CrossRef ADS Google scholar
[234]
L. Fu and C. L. Kane, Superconducting proximity effect and Majorana fermions at the surface of a topological insulator, Phys. Rev. Lett.100, 096407 (2008)
CrossRef ADS Google scholar
[235]
A. R. Akhmerov, J. Nilsson, and C. W. J. Beenakker, Electrically detected interferometry of Majorana fermions in a topological insulator, Phys. Rev. Lett.102, 216404 (2009)
CrossRef ADS Google scholar
[236]
I. Belopolski, , A novel artificial condensed matter lattice and a new platform for one-dimensional topological phases, Sci. Adv.3, 3 (2017)
CrossRef ADS Google scholar
[237]
C.-K. Chiu, G. Bian, H. Zheng, J.-X. Yin, S. S. Zhang, D. S. Sanchez, I. Belopolski, S.-Y. Xu, and M. Z. Hasan, Chiral majorana fermion modes on the surface of superconducting topological insulators, EPL123, 47005 (2018)
CrossRef ADS Google scholar
[238]
M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Quantum spin Hall insulator state in HgTe quantum wells, Science318, 766 (2007)
CrossRef ADS Google scholar
[239]
B. Büttner, , Single valley Dirac fermions in zero-gap HgTe quantum wells, Nat. Phys.7, 418 (2011)
CrossRef ADS Google scholar
[240]
A. Mani and C. Benjamin, Probing helicity and the topological origins of helicity via non-local Hanbury–Brown and Twiss correlations, Sci. Rep.7, 6954 (2017)
CrossRef ADS Google scholar
[241]
H. Weng, X. Dai, and Z. Fang, Transition-metal pentatelluride ZrTe5 and HfTe5: A paradigm for large-gap quantum spin Hall insulators, Phys. Rev. X4, 011002 (2014)
CrossRef ADS Google scholar
[242]
Y. Liu, , Zeeman splitting and dynamical mass generation in Dirac semimetal ZrTe5, Nat. Commun.7, 12516 (2016)
CrossRef ADS Google scholar
[243]
W. Zhang, R. Yu, W. Feng, Y. Yao, H. Weng, X. Dai, and Z. Fang, Topological aspect and quantum magnetoresistance of β-Ag2Te, Phys. Rev. Lett.106, 156808 (2011)
CrossRef ADS Google scholar
[244]
H.-Z. Lu, J. Shi, and S.-Q. Shen, Competition between weak localization and antilocalization in topological surface states, Phys. Rev. Lett.107, 076801 (2011)
CrossRef ADS Google scholar
[245]
H.-W. Wang, B. Fu, and S.-Q. Shen, Intrinsic magnetoresistance in three-dimensional Dirac materials with low carrier density, Phys. Rev. B98, 081202 (2018)
CrossRef ADS Google scholar
[246]
A. Alexandradinata and L. Glazman, Geometric phase and orbital moment in quantization rules for magnetic breakdown, Phys. Rev. Lett.119, 256601 (2017)
CrossRef ADS Google scholar
[247]
A. Alexandradinata, C. Wang, W. Duan, and L. Glazman, Revealing the topology of fermi-surface wave functions from magnetic quantum oscillations, Phys. Rev. X8, 011027 (2018)
CrossRef ADS Google scholar
[248]
J. Höller and A. Alexandradinata, Topological Bloch oscillations, Phys. Rev. B98, 024310 (2018)
CrossRef ADS Google scholar
[249]
T. E. O’Brien, M. Diez, and C. W. J. Beenakker, Magnetic breakdown and Klein tunneling in a type-II Weyl semimetal, Phys. Rev. Lett.116, 236401 (2016)
CrossRef ADS Google scholar
[250]
F. Fei, , Nontrivial berry phase and type-ii dirac transport in the layered material PdTe2, Phys. Rev. B96, 041201 (2017)
CrossRef ADS Google scholar
[251]
H. Yang, R. Moessner, and L.-K. Lim, Quantum oscillations in nodal line systems, Phys. Rev. B97, 165118 (2018)
CrossRef ADS Google scholar
[252]
L. Oroszlány, B. Dóra, J. Cserti, and A. Cortijo, Topological and trivial magnetic oscillations in nodal loop semimetals, Phys. Rev. B97, 205107 (2018)
CrossRef ADS Google scholar
[253]
C. Zhang, , Evolution of Weyl orbit and quantum Hall effect in Dirac semimetal Cd3As2, Nat. Commun.8, 1272 (2017)
CrossRef ADS Google scholar
[254]
Y. Zhang, D. Bulmash, P. Hosur, A. C. Potter, and A. Vishwanath, Quantum oscillations from generic surface Fermi arcs and bulk chiral modes in Weyl semimetals, Sci. Rep.6, 23741 (2016)
CrossRef ADS Google scholar
[255]
B. I. Halperin, Possible states for a three-dimensional electron gas in a strong magnetic field, Japanese J. Appl. Phys.26, 1913 (1987)
CrossRef ADS Google scholar
[256]
F. Tang, , Three-dimensional quantum Hall effect and metal-insulator transition in ZrTe5, arXiv: 1807.02678 (2018)
[257]
H.-Z. Lu, Perspective: 3D quantum Hall effect, Natl. Sci. Rev., nwy082 (2018)
[258]
H. Wang, , Discovery of log-periodic oscillations in ultraquantum topological materials, Sci. Adv.4, 11 (2018)
CrossRef ADS Google scholar
[259]
H. Wang, , Log-periodic quantum magnetooscillations and discrete scale invariance in topological material HfTe5, arXiv: 1810.03109 (2018)
[260]
P. Zhang and H. Zhai, Efimov effect in Dirac semi-metals, Front. Phys.13, 137204 (2018)
CrossRef ADS Google scholar
[261]
H. Liu, H. Jiang, Z. Wang, R. Joynt, and X. C. Xie, Discrete scale invariance in topological semimetals, arXiv: 1807.02459 (2018)
[262]
H. Weng, C. Fang, Z. Fang, and X. Dai, Topological semimetals with triply degenerate nodal points in θ-phase tantalum nitride, Phys. Rev. B93, 241202 (2016)
CrossRef ADS Google scholar
[263]
H. Weng, C. Fang, Z. Fang, and X. Dai, Coexistence of Weyl fermion and massless triply degenerate nodal points, Phys. Rev. B94, 165201 (2016)
CrossRef ADS Google scholar
[264]
B. Bradlyn, J. Cano, Z. Wang, M. G. Vergniory, C. Felser, R. J. Cava, and B. A. Bernevig, Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals, Science353 (2016)
CrossRef ADS Google scholar
[265]
G. Chang, , Nexus fermions in topological symmorphic crystalline metals, Sci. Rep.7, 1688 (2017)
CrossRef ADS Google scholar
[266]
B. Q. Lv, , Observation of three-component fermions in the topological semimetal molybdenum phosphide, Nature546, 627 (2017)
CrossRef ADS Google scholar
[267]
J.-Z. Ma, , Three-component fermions with surface Fermi arcs in tungsten carbide, Nat. Phys.14, 349 (2018)
CrossRef ADS Google scholar
[268]
J. B. He, D. Chen, W. L. Zhu, S. Zhang, L. X. Zhao, Z. A. Ren, and G. F. Chen, Magnetotransport properties of the triply degenerate node topological semimetal tungsten carbide, Phys. Rev. B95, 195165 (2017)
CrossRef ADS Google scholar
[269]
W. L. Zhu, J. B. He, S. Zhang, D. Chen, L. Shan, Z. A. Ren, and G. F. Chen, Magnetotransport properties of the new-type topological semimetal ZrTe, arXiv: 1707.00942 (2017)
[270]
C. Shekhar, , Extremely high conductivity observed in the unconventional triple point fermion material MoP, arXiv: 1703.03736 (2017)
[271]
A. K. Nayak, , Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge, Sci. Adv.2, 4 (2016)
CrossRef ADS Google scholar
[272]
Z. Wang, M. G. Vergniory, S. Kushwaha, M. Hirschberger, E. V. Chulkov, A. Ernst, N. P. Ong, R. J. Cava, and B. A. Bernevig, Time-reversalbreaking Weyl fermions in magnetic Heusler alloys, Phys. Rev. Lett.117, 236401 (2016)
CrossRef ADS Google scholar
[273]
G. Chang, , Room-temperature magnetic topological Weyl fermion and nodal line semimetal states in halfmetallic Heusler Co2TiX (X=Si, Ge, or Sn), Sci. Rep.6, 38839 (2016)
CrossRef ADS Google scholar
[274]
S. Nie, G. Xu, F. B. Prinz, and S.-C. Zhang, Topological semimetal in honeycomb lattice LnSI, Proc. Natl. Acad. Sci. USA114, 10596 (2017)
CrossRef ADS Google scholar
[275]
H. Yang, Y. Sun, Y. Zhang, W.-J. Shi, S. S. P. Parkin, and B. Yan, Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn, New J. Phys.19, 015008 (2017)
CrossRef ADS Google scholar
[276]
E. Liu, , Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal, Nat. Phys.14, 1125 (2018)
CrossRef ADS Google scholar
[277]
Q. Wang, Y. Xu, R. Lou, Z. Liu, M. Li, Y. Huang, D. Shen, H. Weng, S. Wang, and H. Lei, Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions, Nat. Commun.9, 3681 (2018)
CrossRef ADS Google scholar
[278]
S. N. Guin, , Anomalous Nernst effect beyond the magnetization scaling relation in the ferromagnetic Heusler compound Co2MnGa, arXiv: 1806.06753 (2018)
[279]
G. Chang, , Magnetic and noncentrosymmetric weyl fermion semimetals in the RAlGe family of compounds (R=rare earth), Phys. Rev. B97, 041104 (2018)
CrossRef ADS Google scholar
[280]
J.-X. Yin, , Giant and anisotropic many-body spinorbit tunability in a strongly correlated kagome magnet, Nature562, 91 (2018)
CrossRef ADS Google scholar
[281]
S.-M. Huang, , New type of Weyl semimetal with quadratic double Weyl fermions, Proc. Natl. Acad. Sci. USA113, 1180 (2016)
CrossRef ADS Google scholar
[282]
A. A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X. Dai, and B. A. Bernevig, Type-II Weyl semimetals, Nature527, 495 (2015)
CrossRef ADS Google scholar
[283]
K. Deng, , Experimental observation of topological fermi arcs in type-II Weyl semimetal MoTe2, Nat. Phys.12, 1105 (2016)
CrossRef ADS Google scholar
[284]
J. Jiang, , Signature of type-II Weyl semimetal phase in MoTe2, Nat. Commun.8, 13973 (2017)
CrossRef ADS Google scholar
[285]
Y. Wang, , Gate-tunable negative longitudinal magnetoresistance in the predicted type-II Weyl semimetal WTe2, Nat. Commun.7, 13142 (2016)
CrossRef ADS Google scholar
[286]
E. Zhang, , Tunable positive to negative magnetoresistance in atomically thin WTe2, Nano Lett.17, 878 (2017)
CrossRef ADS Google scholar
[287]
D. Chen, , Magnetotransport properties of the type-II Weyl semimetal candidate Ta3S2, Phys. Rev. B94, 174411 (2016)
[288]
S. Khim, , Magnetotransport and de Haas–van Alphen measurements in the type-II Weyl semimetal TaIrTe4, Phys. Rev. B94, 165145 (2016)
CrossRef ADS Google scholar
[289]
S.-Y. Xu, , Discovery of lorentz-violating type II Weyl fermions in laalge, Sci. Adv.3, 6 (2017)
CrossRef ADS Google scholar
[290]
I. Belopolski, , Discovery of a new type of topological Weyl fermion semimetal state in MoxW1–xTe2, Nat. Commun.7, 13643 (2016)
CrossRef ADS Google scholar
[291]
G. Chang, , A strongly robust type II Weyl fermion semimetal state in Ta3S2, Sci. Adv.2, 6 (2016)
CrossRef ADS Google scholar
[292]
C. Zhong, Y. Chen, Z.-M. Yu, Y. Xie, H. Wang, S. A. Yang, and S. Zhang, Three-dimensional pentagon carbon with a genesis of emergent fermions, Nat. Commun.8, 15641 (2017)
CrossRef ADS Google scholar
[293]
W. Chen, H.-Z. Lu, and J.-M. Hou, Topological semimetals with a double-helix nodal link, Phys. Rev. B96, 041102 (2017)
CrossRef ADS Google scholar
[294]
Z. Yan, R. Bi, H. Shen, L. Lu, S.-C. Zhang, and Z. Wang, Nodal-link semimetals, Phys. Rev. B96, 041103 (2017)
CrossRef ADS Google scholar
[295]
M. Ezawa, Topological semimetals carrying arbitrary Hopf numbers: Fermi surface topologies of a Hopf link, Solomon’s knot, trefoil knot, and other linked nodal varieties, Phys. Rev. B96, 041202 (2017)
CrossRef ADS Google scholar
[296]
L.-X. Wang, C.-Z. Li, D.-P. Yu, and Z.-M. Liao, Aharonov–Bohm oscillations in Dirac semimetal Cd3As2 nanowires, Nat. Commun.7, 10769 (2016)
CrossRef ADS Google scholar
[297]
H. Zheng, , Atomic-scale visualization of quasiparticle interference on a type-II Weyl semimetal surface, Phys. Rev. Lett.117, 266804 (2016)
CrossRef ADS Google scholar
[298]
H. Zheng and M. Z. Hasan, Quasiparticle interference on type-I and type-II Weyl semimetal surfaces: A review, Advances in Physics: X3, 1466661 (2018)
CrossRef ADS Google scholar
[299]
H. Zheng, , Mirror protected Dirac fermions on a Weyl semimetal NbP surface, Phys. Rev. Lett.119, 196403 (2017)
CrossRef ADS Google scholar
[300]
G. Chang, , Signatures of Fermi arcs in the quasiparticle interferences of the Weyl semimetals TaAs and NbP, Phys. Rev. Lett.116, 066601 (2016)
CrossRef ADS Google scholar
[301]
S. Wang, B.-C. Lin, W.-Z. Zheng, D. Yu, and Z.-M. Liao, Fano interference between bulk and surface states of a Dirac semimetal Cd3As2 nanowire, Phys. Rev. Lett.120, 257701 (2018)
CrossRef ADS Google scholar
[302]
J. Gooth, , Experimental signatures of the mixed axial-gravitational anomaly in the Weyl semimetal NbP, Nature547, 324 (2017)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
AI Summary AI Mindmap
PDF(4045 KB)

Accesses

Citations

Detail

Sections
Recommended

/