Quantum transport in topological semimetals under magnetic fields (II)
Hai-Peng Sun, Hai-Zhou Lu
Quantum transport in topological semimetals under magnetic fields (II)
We review our recent works on the quantum transport, mainly in topological semimetals and also in topological insulators, organized according to the strength of the magnetic field. At weak magnetic fields, we explain the negative magnetoresistance in topological semimetals and topological insulators by using the semiclassical equations of motion with the nontrivial Berry curvature. We show that the negative magnetoresistance can exist without the chiral anomaly. At strong magnetic fields, we establish theories for the quantum oscillations in topological Weyl, Dirac, and nodal-line semimetals. We propose a new mechanism of 3D quantum Hall effect, via the “wormhole” tunneling through the Weyl orbit formed by the Fermi arcs and Weyl nodes in topological semimetals. In the quantum limit at extremely strong magnetic fields, we find that an unexpected Hall resistance reversal can be understood in terms of the Weyl fermion annihilation. Additionally, in parallel magnetic fields, longitudinal resistance dips in the quantum limit can serve as signatures for topological insulators.
topological semimetal / topological insulator / quantum oscillation / negative magnetoresistance / quantum Hall effect
[1] |
H.-Z. Lu and S.-Q. Shen, Quantum transport in topological semimetals under magnetic fields, Front. Phys.12, 127201 (2017)
CrossRef
ADS
Google scholar
|
[2] |
H. Z. Lu and S. Q. Shen, Weak antilocalization and localization in disordered and interacting Weyl semimetals, Phys. Rev. B92, 035203 (2015)
CrossRef
ADS
Google scholar
|
[3] |
X. Dai, H.-Z. Lu, S.-Q. Shen, and H. Yao, Detecting monopole charge in Weyl semimetals via quantum interference transport, Phys. Rev. B93, 161110(R) (2016)
CrossRef
ADS
Google scholar
|
[4] |
H. Li, H. T. He, H. Z. Lu, H. C. Zhang, H. C. Liu, R. Ma, Z. Y. Fan, S. Q. Shen, and J. N. Wang, Negative magnetoresistance in Dirac semimetal Cd3As2, Nat. Commun.7, 10301 (2016)
CrossRef
ADS
Google scholar
|
[5] |
H. Z. Lu, S. B. Zhang, and S. Q. Shen, High-field magnetoconductivity of topological semimetals with short-range potential, Phys. Rev. B92, 045203 (2015)
CrossRef
ADS
Google scholar
|
[6] |
S.-B. Zhang, H.-Z. Lu, and S.-Q. Shen, Linear magnetoconductivity in an intrinsic topological Weyl semimetal, New J. Phys.18, 053039 (2016)
CrossRef
ADS
Google scholar
|
[7] |
C. M. Wang, H.-P. Sun, H.-Z. Lu, and X. C. Xie, 3D quantum Hall effect of Fermi arcs in topological semimetals, Phys. Rev. Lett.119, 136806 (2017)
CrossRef
ADS
Google scholar
|
[8] |
C. M. Wang, H.-Z. Lu, and S.-Q. Shen, Anomalous phase shift of quantum oscillations in 3D topological semimetals, Phys. Rev. Lett.117, 077201 (2016)
CrossRef
ADS
Google scholar
|
[9] |
C. Li, C. M. Wang, B. Wan, X. Wan, H.-Z. Lu, and X. C. Xie, Rules for phase shifts of quantum oscillations in topological nodal-line semimetals, Phys. Rev. Lett.120, 146602 (2018)
CrossRef
ADS
Google scholar
|
[10] |
X. Dai, Z. Z. Du, and H.-Z. Lu, Negative magnetoresistance without chiral anomaly in topological insulators, Phys. Rev. Lett.119, 166601 (2017)
CrossRef
ADS
Google scholar
|
[11] |
C.-L. Zhang,
CrossRef
ADS
Google scholar
|
[12] |
Y. Chen, H.-Z. Lu, and X. C. Xie, Forbidden backscattering and resistance dip in the quantum limit as a signature for topological insulators, Phys. Rev. Lett.121, 036602 (2018)
CrossRef
ADS
Google scholar
|
[13] |
H. Weng, X. Dai, and Z. Fang, Topological semimetals predicted from first-principles calculations, J. Phys.: Condens. Matter28, 303001 (2016)
CrossRef
ADS
Google scholar
|
[14] |
B. Yan and C. Felser, Topological materials: Weyl semimetals, Ann. Rev. Condens. Matter Phys.8, 337 (2017)
CrossRef
ADS
Google scholar
|
[15] |
N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and Dirac semimetals in three-dimensional solids, Rev. Mod. Phys.90, 015001 (2018)
CrossRef
ADS
Google scholar
|
[16] |
H. Wang and J. Wang, Electron transport in Dirac and Weyl semimetals, Chin. Phys. B27, 107402 (2018)
CrossRef
ADS
Google scholar
|
[17] |
X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B83, 205101 (2011)
CrossRef
ADS
Google scholar
|
[18] |
K. Y. Yang, Y. M. Lu, and Y. Ran, Quantum Hall effects in a Weyl semimetal: Possible application in pyrochlore iridates, Phys. Rev. B84, 075129 (2011)
CrossRef
ADS
Google scholar
|
[19] |
A. A. Burkov and L. Balents, Weyl semimetal in a topological insulator multilayer, Phys. Rev. Lett.107, 127205 (2011)
CrossRef
ADS
Google scholar
|
[20] |
G. Xu, H. M. Weng, Z. J. Wang, X. Dai, and Z. Fang, Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4, Phys. Rev. Lett.107, 186806 (2011)
CrossRef
ADS
Google scholar
|
[21] |
P. Delplace, J. Li, and D. Carpentier, Topological Weyl semi-metal from a lattice model, EPL97, 67004 (2012)
CrossRef
ADS
Google scholar
|
[22] |
J.-H. Jiang, Tunable topological Weyl semimetal from simple-cubic lattices with staggered fluxes, Phys. Rev. A85, 033640 (2012)
CrossRef
ADS
Google scholar
|
[23] |
S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, Dirac semimetal in three dimensions, Phys. Rev. Lett.108, 140405 (2012)
CrossRef
ADS
Google scholar
|
[24] |
Z. Wang, Y. Sun, X. Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, and Z. Fang, Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb), Phys. Rev. B85, 195320 (2012)
CrossRef
ADS
Google scholar
|
[25] |
B. Singh, A. Sharma, H. Lin, M. Z. Hasan, R. Prasad, and A. Bansil, Topological electronic structure and Weyl semimetal in the TlBiSe2 class of semiconductors, Phys. Rev. B86, 115208 (2012)
CrossRef
ADS
Google scholar
|
[26] |
Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Threedimensional Dirac semimetal and quantum transport in Cd3As2, Phys. Rev. B88, 125427 (2013)
CrossRef
ADS
Google scholar
|
[27] |
J. Liu and D. Vanderbilt, Weyl semimetals from noncentrosymmetric topological insulators, Phys. Rev. B90, 155316 (2014)
CrossRef
ADS
Google scholar
|
[28] |
D. Bulmash, C.-X. Liu, and X.-L. Qi, Prediction of a Weyl semimetal in HgCdMnTe, Phys. Rev. B89, 081106 (2014)
CrossRef
ADS
Google scholar
|
[29] |
Z. K. Liu,
CrossRef
ADS
Google scholar
|
[30] |
S. Y. Xu,
CrossRef
ADS
Google scholar
|
[31] |
Z. K. Liu,
CrossRef
ADS
Google scholar
|
[32] |
M. Neupane,
CrossRef
ADS
Google scholar
|
[33] |
S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Büchner, and R. J. Cava, Experimental realization of a three-dimensional Dirac semimetal, Phys. Rev. Lett.113, 027603 (2014)
CrossRef
ADS
Google scholar
|
[34] |
H. Yi,
CrossRef
ADS
Google scholar
|
[35] |
C. Zhang,
CrossRef
ADS
Google scholar
|
[36] |
C. Z. Li, L. X. Wang, H. W. Liu, J. Wang, Z. M. Liao, and D. P. Yu, Giant negative magnetoresistance induced by the chiral anomaly in individual Cd3As2 nanowires, Nat. Commun.6, 10137 (2015)
CrossRef
ADS
Google scholar
|
[37] |
S. M. Huang,
CrossRef
ADS
Google scholar
|
[38] |
H. M. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides, Phys. Rev. X5, 011029 (2015)
CrossRef
ADS
Google scholar
|
[39] |
B. Q. Lv,
CrossRef
ADS
Google scholar
|
[40] |
B. Q. Lv,
CrossRef
ADS
Google scholar
|
[41] |
B. Q. Lv,
CrossRef
ADS
Google scholar
|
[42] |
S. Y. Xu,
CrossRef
ADS
Google scholar
|
[43] |
L. X. Yang,
CrossRef
ADS
Google scholar
|
[44] |
Z. K. Liu,
CrossRef
ADS
Google scholar
|
[45] |
C. L. Zhang,
CrossRef
ADS
Google scholar
|
[46] |
X. C. Huang,
CrossRef
ADS
Google scholar
|
[47] |
S.-Y. Xu,
CrossRef
ADS
Google scholar
|
[48] |
N. Xu,
CrossRef
ADS
Google scholar
|
[49] |
S.-Y. Xu,
|
[50] |
I. Belopolski,
CrossRef
ADS
Google scholar
|
[51] |
I. Belopolski,
CrossRef
ADS
Google scholar
|
[52] |
S.-Y. Xu,
|
[53] |
I. Belopolski,
CrossRef
ADS
Google scholar
|
[54] |
S. Borisenko, D. Evtushinsky, Q. Gibson, A. Yaresko, T. Kim, M. N. Ali, B. Buechner, M. Hoesch, and R. J. Cava, Time-reversal symmetry breaking type-II Weyl state in YbMnBi2, arXiv: 1507.04847 (2015)
|
[55] |
M. Hirschberger, S. Kushwaha, Z. Wang, Q. Gibson, S. Liang, C. Belvin, B. A. Bernevig, R. J. Cava, and N. P. Ong, The chiral anomaly and thermopower of Weyl fermions in the half-Heusler GdPtBi, Nat. Mater.15, 1161 (2016)
CrossRef
ADS
Google scholar
|
[56] |
C. Felser and B. Yan, Weyl semimetals: Magnetically induced, Nat. Mater.15, 1149 (2016)
CrossRef
ADS
Google scholar
|
[57] |
C. Shekhar,
CrossRef
ADS
Google scholar
|
[58] |
S.-Q. Shen, Topological Insulators, 2nd Ed., Springer-Verlag, Berlin Heidelberg, 2017
|
[59] |
R. Okugawa and S. Murakami, Dispersion of Fermi arcs in Weyl semimetals and their evolutions to Dirac cones, Phys. Rev. B89, 235315 (2014)
CrossRef
ADS
Google scholar
|
[60] |
H. Z. Lu, S. B. Zhang, and S. Q. Shen, High-field magnetoconductivity of topological semimetals with short-range potential, Phys. Rev. B92, 045203 (2015)
CrossRef
ADS
Google scholar
|
[61] |
P. E. C. Ashby and J. P. Carbotte, Theory of magnetic oscillations in Weyl semimetals, Eur. Phys. J. B87 (2014)
CrossRef
ADS
Google scholar
|
[62] |
E. V. Gorbar, V. A. Miransky, and I. A. Shovkovy, Chiral anomaly, dimensional reduction, and magnetoresistivity of Weyl and Dirac semimetals, Phys. Rev. B89, 085126 (2014)
CrossRef
ADS
Google scholar
|
[63] |
H. Z. Lu, W. Y. Shan, W. Yao, Q. Niu, and S. Q. Shen, Massive Dirac fermions and spin physics in an ultrathin film of topological insulator, Phys. Rev. B81, 115407 (2010)
CrossRef
ADS
Google scholar
|
[64] |
S. Jeon, B. B. Zhou, A. Gyenis, B. E. Feldman, I. Kimchi, A. C. Potter, Q. D. Gibson, R. J. Cava, A. Vishwanath, and A. Yazdani, Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2, Nat. Mater.13, 851 (2014)
CrossRef
ADS
Google scholar
|
[65] |
A. A. Burkov, M. D. Hook, and L. Balents, Topological nodal semimetals, Phys. Rev. B84, 235126 (2011)
CrossRef
ADS
Google scholar
|
[66] |
C.-K. Chiu and A. P. Schnyder, Classification of reflection-symmetry-protected topological semimetals and nodal superconductors, Phys. Rev. B90, 205136 (2014)
CrossRef
ADS
Google scholar
|
[67] |
C. Fang, H. Weng, X. Dai, and Z. Fang, Topological nodal line semimetals, Chin. Phys. B25, 117106 (2016)
CrossRef
ADS
Google scholar
|
[68] |
B.-J. Yang, T. A. Bojesen, T. Morimoto, and A. Furusaki, Topological semimetals protected by off-centered symmetries in nonsymmorphic crystals, Phys. Rev. B95, 075135 (2017)
CrossRef
ADS
Google scholar
|
[69] |
Y. Chen, Y. Xie, S. A. Yang, H. Pan, F. Zhang, M. L. Cohen, and S. Zhang, Nanostructured carbon allotropes with Weyl-like loops and points, Nano Lett.15, 6974 (2015)
CrossRef
ADS
Google scholar
|
[70] |
T. Bzdušek, Q. Wu, A. Rüegg, M. Sigrist, and A. A. Soluyanov, Nodal-chain metals, Nature538, 75 (2016)
CrossRef
ADS
Google scholar
|
[71] |
X. Feng, C. Yue, Z. Song, Q. Wu, and B. Wen, Topological Dirac nodal-net fermions in AlB2-type TiB2 and ZrB2, Phys. Rev. Mater.2, 014202 (2018)
CrossRef
ADS
Google scholar
|
[72] |
C.-J. Yi,
CrossRef
ADS
Google scholar
|
[73] |
W. Chen, K. Luo, L. Li, and O. Zilberberg, Proposal for detecting nodal-line semimetal surface states with resonant spin-flipped reflection, Phys. Rev. Lett.121, 166802 (2018)
CrossRef
ADS
Google scholar
|
[74] |
Z. Zhu,
CrossRef
ADS
Google scholar
|
[75] |
W. Chen and J. L. Lado, Interaction driven surface Chern insulator in nodal line semimetals, arXiv: 1807.06916 (2018)
CrossRef
ADS
Google scholar
|
[76] |
H. Weng, Y. Liang, Q. Xu, R. Yu, Z. Fang, X. Dai, and Y. Kawazoe, Topological node-line semimetal in threedimensional graphene networks, Phys. Rev. B92, 045108 (2015)
CrossRef
ADS
Google scholar
|
[77] |
R. Yu, H. Weng, Z. Fang, X. Dai, and X. Hu, Topological node-line semimetal and Dirac semimetal state in antiperovskite Cu3PdN, Phys. Rev. Lett.115, 036807 (2015)
CrossRef
ADS
Google scholar
|
[78] |
Y. Kim, B. J. Wieder, C. L. Kane, and A. M. Rappe, Dirac line nodes in inversion-symmetric crystals, Phys. Rev. Lett.115, 036806 (2015)
CrossRef
ADS
Google scholar
|
[79] |
C. Fang, Y. Chen, H.-Y. Kee, and L. Fu, Topological nodal line semimetals with and without spin-orbital coupling, Phys. Rev. B92, 081201 (2015)
CrossRef
ADS
Google scholar
|
[80] |
Y. Chen, Y.-M. Lu, and H.-Y. Kee, Topological crystalline metal in orthorhombic perovskite iridates, Nat. Commun.6, 6593 (2015)
CrossRef
ADS
Google scholar
|
[81] |
G. Bian,
CrossRef
ADS
Google scholar
|
[82] |
L. S. Xie, L. M. Schoop, E. M. Seibel, Q. D. Gibson, W. Xie, and R. J. Cava, A new form of Ca3P2 with a ring of Dirac nodes, APL Mater.3, 083602 (2015)
CrossRef
ADS
Google scholar
|
[83] |
Y.-H. Chan, C.-K. Chiu, M. Y. Chou, and A. P. Schnyder, Ca3P2 and other topological semimetals with line nodes and drumhead surface states, Phys. Rev. B93, 205132 (2016)
CrossRef
ADS
Google scholar
|
[84] |
Y. Du, F. Tang, D. Wang, L. Sheng, E.-j. Kan, C.-G. Duan, S. Y. Savrasov, and X. Wan, CaTe: A new topological node-line and Dirac semimetal, npj Quantum Mater.2, 3 (2017)
CrossRef
ADS
Google scholar
|
[85] |
J. Zhao, R. Yu, H. Weng, and Z. Fang, Topological nodeline semimetal in compressed black phosphorus, Phys. Rev. B94, 195104 (2016)
CrossRef
ADS
Google scholar
|
[86] |
A. Yamakage, Y. Yamakawa, Y. Tanaka, and Y. Okamoto, Line-node Dirac semimetal and topological insulating phase in noncentrosymmetric pnictides CaAgX (X= P, As), J. Phys. Soc. Japan85, 013708 (2015)
CrossRef
ADS
Google scholar
|
[87] |
Q. Xu, R. Yu, Z. Fang, X. Dai, and H. Weng, Topological nodal line semimetals in the CaP3 family of materials, Phys.Rev. B95, 045136 (2017)
CrossRef
ADS
Google scholar
|
[88] |
Y.-J. Jin, R. Wang, J.-Z. Zhao, Y.-P. Du, C.-D. Zheng, L.-Y. Gan, J.-F. Liu, H. Xu, and S. Tong, The prediction of a family group of two-dimensional node-line semimetals, Nanoscale9, 13112 (2017)
CrossRef
ADS
Google scholar
|
[89] |
Z. Zhu, M. Li, and J. Li, Topological semimetal to insulator quantum phase transition in the Zintl compounds Ba2X (X=Si,Ge), Phys. Rev. B94, 155121 (2016)
CrossRef
ADS
Google scholar
|
[90] |
Q.-F. Liang, J. Zhou, R. Yu, Z. Wang, and H. Weng, Node-surface and node-line fermions from nonsymmorphic lattice symmetries, Phys. Rev. B93, 085427 (2016)
CrossRef
ADS
Google scholar
|
[91] |
M. Zeng, C. Fang, G. Chang, Y.-A. Chen, T. Hsieh, A. Bansil, H. Lin, and L. Fu, Topological semimetals and topological insulators in rare earth monopnictides, arXiv: 1504.03492 (2015)
|
[92] |
M. Hirayama, R. Okugawa, T. Miyake, and S. Murakami, Topological Dirac nodal lines and surface charges in fcc alkaline earth metals, Nat Commun.8, 14022 (2017)
CrossRef
ADS
Google scholar
|
[93] |
H. Huang, J. Liu, D. Vanderbilt, and W. Duan, Topological nodal-line semimetals in alkaline-earth stannides, germanides, and silicides, Phys. Rev. B93, 201114 (2016)
CrossRef
ADS
Google scholar
|
[94] |
R. Li, H. Ma, X. Cheng, S. Wang, D. Li, Z. Zhang, Y. Li, and X.-Q. Chen, Dirac node lines in pure alkali earth metals, Phys. Rev. Lett.117, 096401 (2016)
CrossRef
ADS
Google scholar
|
[95] |
J.-T. Wang, H. Weng, S. Nie, Z. Fang, Y. Kawazoe, and C. Chen, Body-centered orthorhombic C16: A novel topological node-line semimetal, Phys. Rev. Lett.116, 195501 (2016)
CrossRef
ADS
Google scholar
|
[96] |
Y. Sun, Y. Zhang, C.-X. Liu, C. Felser, and B. Yan, Dirac nodal lines and induced spin Hall effect in metallic rutile oxides, Phys. Rev. B95, 235104 (2017)
CrossRef
ADS
Google scholar
|
[97] |
L. M. Schoop, M. N. Ali, C. Straßer, A. Topp, A. Varykhalov, D. Marchenko, V. Duppel, S. S. P. Parkin, B. V. Lotsch, and C. R. Ast, Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS, Nat. Commun.7, 11696 (2016)
CrossRef
ADS
Google scholar
|
[98] |
M. Neupane,
CrossRef
ADS
Google scholar
|
[99] |
C. Chen,
CrossRef
ADS
Google scholar
|
[100] |
G. Bian,
CrossRef
ADS
Google scholar
|
[101] |
T.-R. Chang,
CrossRef
ADS
Google scholar
|
[102] |
S. A. Ekahana,
CrossRef
ADS
Google scholar
|
[103] |
Y. Wu, L.-L. Wang, E. Mun, D. D. Johnson, D. Mou, L. Huang, Y. Lee, S. L. Bud’ko, P. C. Canfield, and A. Kaminski, Dirac node arcs in PtSn4, Nat. Phys.12, 667 (2016)
CrossRef
ADS
Google scholar
|
[104] |
A. Alexandradinata and L. Glazman, Semiclassical theory of Landau levels and magnetic breakdown in topological metals, Phys. Rev. B97, 144422 (2018)
CrossRef
ADS
Google scholar
|
[105] |
H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nat. Phys.5, 438 (2009)
CrossRef
ADS
Google scholar
|
[106] |
I. A. Nechaev and E. E. Krasovskii, Relativistic k·p Hamiltonians for centrosymmetric topological insulators from ab initio wave functions, Phys. Rev. B94, 201410 (2016)
CrossRef
ADS
Google scholar
|
[107] |
W.-Y. Shan, H.-Z. Lu, and S.-Q. Shen, Effective continuous model for surface states and thin films of threedimensional topological insulators, New J. Phys.12, 043048 (2010)
CrossRef
ADS
Google scholar
|
[108] |
Y. Zhang,
CrossRef
ADS
Google scholar
|
[109] |
J. Wang,
CrossRef
ADS
Google scholar
|
[110] |
H. T. He, H. C. Liu, B. K. Li, X. Guo, Z. J. Xu, M. H. Xie, and J. N. Wang, Disorder-induced linear magnetoresistance in (221) topological insulator Bi2Se3 films, Appl. Phys. Lett.103, 031606 (2013)
CrossRef
ADS
Google scholar
|
[111] |
S. Wiedmann,
CrossRef
ADS
Google scholar
|
[112] |
L.-X. Wang, Y. Yan, L. Zhang, Z.-M. Liao, H.-C. Wu, and D.-P. Yu, Zeeman effect on surface electron transport in topological insulator Bi2Se3 nanoribbons, Nanoscale7, 16687 (2015)
CrossRef
ADS
Google scholar
|
[113] |
S. L. Adler, Axial-vector vertex in spinor electrodynamics, Phys. Rev.177, 2426 (1969)
CrossRef
ADS
Google scholar
|
[114] |
J. S. Bell and R. Jackiw, A PCAC puzzle: π0→γγ in the σ-model, Il Nuovo Cimento A60, 47 (1969)
CrossRef
ADS
Google scholar
|
[115] |
H. B. Nielsen and M. Ninomiya, Absence of neutrinos on a lattice (i): Proof by homotopy theory, Nucl. Phys. B185, 20 (1981)
CrossRef
ADS
Google scholar
|
[116] |
H. J. Kim, K. S. Kim, J. F. Wang, M. Sasaki, N. Satoh, A. Ohnishi, M. Kitaura, M. Yang, and L. Li, Dirac versus Weyl fermions in topological insulators: Adler-Bell-Jackiw anomaly in transport phenomena, Phys. Rev. Lett.111, 246603 (2013)
CrossRef
ADS
Google scholar
|
[117] |
K.-S. Kim, H.-J. Kim, and M. Sasaki, Boltzmann equation approach to anomalous transport in a Weyl metal, Phys. Rev. B89, 195137 (2014)
CrossRef
ADS
Google scholar
|
[118] |
Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosic, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, and T. Valla, Chiral magnetic effect in ZrTe5, Nat. Phys.12, 550 (2016)
CrossRef
ADS
Google scholar
|
[119] |
J. Xiong, S. K. Kushwaha, T. Liang, J. W. Krizan, M. Hirschberger, W. Wang, R. J. Cava, and N. P. Ong, Evidence for the chiral anomaly in the Dirac semimetal Na3Bi, Science350, 413 (2015)
CrossRef
ADS
Google scholar
|
[120] |
F. Arnold,
CrossRef
ADS
Google scholar
|
[121] |
X. J. Yang, Y. P. Liu, Z. Wang, Y. Zheng, and Z. A. Xu, Chiral anomaly induced negative magnetoresistance in topological Weyl semimetal NbAs, arXiv: 1506.03190 (2015)
|
[122] |
X. Yang, Y. Li, Z. Wang, Y. Zhen, and Z.-A. Xu, Observation of negative magnetoresistance and nontrivial π Berry’s phase in 3D Weyl semi-metal NbAs, arXiv: 1506.02283 (2015)
|
[123] |
H. Wang,
CrossRef
ADS
Google scholar
|
[124] |
O. Breunig, Z. Wang, A. A. Taskin, J. Lux, A. Rosch, and Y. Ando, Gigantic negative magnetoresistance in the bulk of a disordered topological insulator, Nat. Commun.8, 15545 (2017)
CrossRef
ADS
Google scholar
|
[125] |
B. A. Assaf,
CrossRef
ADS
Google scholar
|
[126] |
M. Zhang,
CrossRef
ADS
Google scholar
|
[127] |
C. Fleckenstein, N. Traverso Ziani, and B. Trauzettel, Chiral anomaly in real space from stable fractional charges at the edge of a quantum spin hall insulator, Phys. Rev. B94, 241406 (2016)
CrossRef
ADS
Google scholar
|
[128] |
A. Wolos,
CrossRef
ADS
Google scholar
|
[129] |
D. Culcer, Transport in three-dimensional topological insulators: Theory and experiment, Physica E44, 860 (2012)
CrossRef
ADS
Google scholar
|
[130] |
G. Sundaram and Q. Niu, Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects, Phys. Rev. B59, 14915 (1999)
CrossRef
ADS
Google scholar
|
[131] |
D. Xiao, M. C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys.82, 1959 (2010)
CrossRef
ADS
Google scholar
|
[132] |
G. D. Mahan, Many-Particle Physics, Plenum Press, 1990
CrossRef
ADS
Google scholar
|
[133] |
D. T. Son and B. Z. Spivak, Chiral anomaly and classical negative magnetoresistance of Weyl metals, Phys. Rev. B88, 104412 (2013)
CrossRef
ADS
Google scholar
|
[134] |
S.-K. Yip, Kinetic equation and magneto-conductance for Weyl metal in the clean limit, arXiv: 1508.01010 (2015)
|
[135] |
A. A. Burkov, Chiral anomaly and diffusive magnetotransport in Weyl metals, Phys. Rev. Lett.113, 247203 (2014)
CrossRef
ADS
Google scholar
|
[136] |
S. Mao, A. Yamakage, and Y. Kuramoto, Tight-binding model for topological insulators: Analysis of helical surface modes over the whole Brillouin zone, Phys. Rev. B84, 115413 (2011)
CrossRef
ADS
Google scholar
|
[137] |
J. G. Checkelsky, Y. S. Hor, M.-H. Liu, D.-X. Qu, R. J. Cava, and N. P. Ong, Quantum interference in macroscopic crystals of nonmetallic Bi2Se3, Phys. Rev. Lett.103, 246601 (2009)
CrossRef
ADS
Google scholar
|
[138] |
J.Chen,
CrossRef
ADS
Google scholar
|
[139] |
J. Wang, A. M. DaSilva, C.-Z. Chang, K. He, J. K. Jain, N. Samarth, X.-C. Ma, Q.-K. Xue, and M. H. W. Chan, Evidence for electron-electron interaction in topological insulator thin films, Phys. Rev. B83, 245438 (2011)
CrossRef
ADS
Google scholar
|
[140] |
H.-T. He, G. Wang, T. Zhang, I.-K. Sou, G. K. L. Wong, J.-N. Wang, H.-Z. Lu, S.-Q. Shen, and F.-C. Zhang, Impurity effect on weak antilocalization in the topological insulator Bi2Te3, Phys. Rev. Lett.106, 166805 (2011)
CrossRef
ADS
Google scholar
|
[141] |
H. Köhler and E. Wöchner, The g-factor of the conduction electrons in Bi2Se3, physica status solidi (b)67, 665 (1975)
CrossRef
ADS
Google scholar
|
[142] |
A. Srinivasan, K. L. Hudson, D. Miserev, L. A. Yeoh, O. Klochan, K. Muraki, Y. Hirayama, O. P. Sushkov, and A. R. Hamilton, Electrical control of the sign of the g factor in a GaAs hole quantum point contact, Phys. Rev. B94, 041406 (2016)
CrossRef
ADS
Google scholar
|
[143] |
T. Morimoto, S. Zhong, J. Orenstein, and J. E. Moore, Semiclassical theory of nonlinear magneto-optical responses with applications to topological Dirac/Weyl semimetals, Phys. Rev. B94, 245121 (2016)
CrossRef
ADS
Google scholar
|
[144] |
Y. Gao, S. A. Yang, and Q. Niu, Intrinsic relative magnetoconductivity of nonmagnetic metals, Phys. Rev. B95, 165135 (2017)
CrossRef
ADS
Google scholar
|
[145] |
Y. Gao, S. A. Yang, and Q. Niu, Field induced positional shift of Bloch electrons and its dynamical implications, Phys. Rev. Lett.112, 166601 (2014)
CrossRef
ADS
Google scholar
|
[146] |
Y. Gao, S. A. Yang, and Q. Niu, Geometrical effects in orbital magnetic susceptibility, Phys. Rev. B91, 214405 (2015)
CrossRef
ADS
Google scholar
|
[147] |
P. Goswami, J. H. Pixley, and S. Das Sarma, Axial anomaly and longitudinal magnetoresistance of a generic three-dimensional metal, Phys. Rev. B92, 075205 (2015)
CrossRef
ADS
Google scholar
|
[148] |
R. D. dos Reis, M. O. Ajeesh, N. Kumar, F. Arnold, C. Shekhar, M. Naumann, M. Schmidt, M. Nicklas, and E. Hassinger, On the search for the chiral anomaly in Weyl semimetals: the negative longitudinal magnetoresistance, New J. Phys.18, 085006 (2016)
CrossRef
ADS
Google scholar
|
[149] |
A. V. Andreev and B. Z. Spivak, Longitudinal negative magnetoresistance and magnetotransport phenomena in conventional and topological conductors, Phys. Rev. Lett.120, 026601 (2018)
CrossRef
ADS
Google scholar
|
[150] |
H. Ishizuka and N. Nagaosa, Robustness of anomalyrelated magnetoresistance in doped Weyl semimetals, arXiv: 1808.09093 (2018)
|
[151] |
D. Shoenberg, Magnetic Oscillations in Metals, Cambridge University Press, 1984
CrossRef
ADS
Google scholar
|
[152] |
G. P. Mikitik and Y. V. Sharlai, Manifestation of Berry’s phase in metal physics, Phys. Rev. Lett.82, 2147 (1999)
CrossRef
ADS
Google scholar
|
[153] |
I. M. Lifshitz and A. M. Kosevich, Theory of magnetic susceptibility in metals at low temperatures, Sov. Phys. JETP2, 636 (1956)
|
[154] |
D. Shoenberg, The Fermi surfaces of copper, silver and gold. I. the de Haas–van Alphen effect, Phil. Trans. R. Soc. Lond. A255, 85 (1962)
CrossRef
ADS
Google scholar
|
[155] |
P. T. Coleridge and I. M. Templeton, High precision de Haas–van Alphen measurements in the noble metals, J. Phys. F: Metal Phys.2, 643 (1972)
CrossRef
ADS
Google scholar
|
[156] |
I. A. Luk’yanchuk and Y. Kopelevich, Phase analysis of quantum oscillations in graphite, Phys. Rev. Lett.93, 166402 (2004)
CrossRef
ADS
Google scholar
|
[157] |
G. E. Volovik, The Universe in a Helium Droplet, Clarendon Press, Oxford, 2003
|
[158] |
Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature438, 201 (2005)
CrossRef
ADS
Google scholar
|
[159] |
H. Murakawa, M. S. Bahramy, M. Tokunaga, Y. Kohama, C. Bell, Y. Kaneko, N. Nagaosa, H. Y. Hwang, and Y. Tokura, Detection of Berry’s phase in a bulk Rashba semiconductor, Science342, 1490 (2013)
CrossRef
ADS
Google scholar
|
[160] |
L. P. He, X. C. Hong, J. K. Dong, J. Pan, Z. Zhang, J. Zhang, and S. Y. Li, Quantum transport evidence for the three-dimensional Dirac semimetal phase in Cd3As2, Phys. Rev. Lett.113, 246402 (2014)`
CrossRef
ADS
Google scholar
|
[161] |
M. Novak, S. Sasaki, K. Segawa, and Y. Ando, Large linear magnetoresistance in the Dirac semimetal TlBiSSe, Phys. Rev. B91, 041203(R) (2015)
CrossRef
ADS
Google scholar
|
[162] |
Y. F. Zhao,
CrossRef
ADS
Google scholar
|
[163] |
J. Du,
CrossRef
ADS
Google scholar
|
[164] |
Z. Wang,
CrossRef
ADS
Google scholar
|
[165] |
J. Cao,
CrossRef
ADS
Google scholar
|
[166] |
C. Zhang, Z. Yuan, S. Xu, Z. Lin, B. Tong, M. Z. Hasan, J. Wang, C. Zhang, and S. Jia, Tantalum monoarsenide: an exotic compensated semimetal, arXiv: 1502.00251 (2015)
|
[167] |
A. Narayanan,
CrossRef
ADS
Google scholar
|
[168] |
J. Park,
CrossRef
ADS
Google scholar
|
[169] |
F.-X. Xiang, X.-L. Wang, M. Veldhorst, S.-X. Dou, and M. S. Fuhrer, Observation of topological transition of Fermi surface from a spindle torus to a torus in bulk Rashba spin-split BiTeCl, Phys. Rev. B92, 035123 (2015)
CrossRef
ADS
Google scholar
|
[170] |
F. F. Tafti, Q. D. Gibson, S. K. Kushwaha, N. Haldolaarachchige, and R. J. Cava, Resistivity plateau and extreme magnetoresistance in LaSb, Nat. Phys.12, 272 (2016)
CrossRef
ADS
Google scholar
|
[171] |
Y. Luo, N. J. Ghimire, M. Wartenbe, H. Choi, M. Neupane, R. D. McDonald, E. D. Bauer, J. Zhu, J. D. Thompson, and F. Ronning, Electron–hole compensation effect between topologically trivial electrons and nontrivial holes in NbAs, Phys. Rev. B92, 205134 (2015)
CrossRef
ADS
Google scholar
|
[172] |
F. Arnold, M. Naumann, S.-C. Wu, Y. Sun, M. Schmidt, H. Borrmann, C. Felser, B. Yan, and E. Hassinger, Chiral Weyl pockets and Fermi surface topology of the Weyl semimetal TaAs, Phys. Rev. Lett.117, 146401 (2016)
CrossRef
ADS
Google scholar
|
[173] |
J. Klotz,
CrossRef
ADS
Google scholar
|
[174] |
R. D. dos Reis, S. C. Wu, Y. Sun, M. O. Ajeesh, C. Shekhar, M. Schmidt, C. Felser, B. Yan, and M. Nicklas, Pressure tuning the Fermi surface topology of the Weyl semimetal NbP, Phys. Rev. B93, 205102 (2016)
CrossRef
ADS
Google scholar
|
[175] |
P. Sergelius,
CrossRef
ADS
Google scholar
|
[176] |
N. Kumar, K. Manna, Y. Qi, S.-C. Wu, L. Wang, B. Yan, C. Felser, and C. Shekhar, Unusual magnetotransport from Si-square nets in topological semimetal HfSiS, Phys. Rev. B95, 121109 (2017)
CrossRef
ADS
Google scholar
|
[177] |
R. Singha, A. K. Pariari, B. Satpati, and P. Mandal, Large nonsaturating magnetoresistance and signature of nondegenerate Dirac nodes in ZrSiS, Proc. Natl. Acad. Sci. USA114, 2468 (2017)
CrossRef
ADS
Google scholar
|
[178] |
M. N. Ali, L. M. Schoop, C. Garg, J. M. Lippmann, E. Lara, B. Lotsch, and S. S. P. Parkin, Butterfly magnetoresistance, quasi-2D Dirac Fermi surface and topological phase transition in ZrSiS, Sci. Adv.2, e1601742 (2016)
CrossRef
ADS
Google scholar
|
[179] |
X. Wang,
CrossRef
ADS
Google scholar
|
[180] |
Y.-Y. Lv, B.-B. Zhang, X. Li, S.-H. Yao, Y. B. Chen, J. Zhou, S.-T. Zhang, M.-H. Lu, and Y.-F. Chen, Extremely large and significantly anisotropic magnetoresistance in ZrSiS single crystals, App. Phys. Lett.108, 244101 (2016)
CrossRef
ADS
Google scholar
|
[181] |
J. Hu, Z. Tang, J. Liu, Y. Zhu, J. Wei, and Z. Mao, Nearly massless Dirac fermions and strong Zeeman splitting in the nodal-line semimetal ZrSiS probed by de Haas–van Alphen quantum oscillations, Phys. Rev. B96, 045127 (2017)
CrossRef
ADS
Google scholar
|
[182] |
H. Pan,
CrossRef
ADS
Google scholar
|
[183] |
J. Hu,
CrossRef
ADS
Google scholar
|
[184] |
J. Hu, Y. L. Zhu, D. Graf, Z. J. Tang, J. Y. Liu, and Z. Q. Mao, Quantum oscillation studies of the topological semimetal candidate ZrGeM (M=S, Se, Te), Phys. Rev. B95, 205134 (2017)
CrossRef
ADS
Google scholar
|
[185] |
M. Charbonneau, K. M. van Vliet, and P. Vasilopoulos, Linear response theory revisited III: One-body response formulas and generalized Boltzmann equations, J. Math. Phys.23, 318 (1982)
CrossRef
ADS
Google scholar
|
[186] |
P. Vasilopoulos and C. Van Vliet, Linear response theory revisited (IV): Applications, J. Math. Phys.25, 1391 (1984)
CrossRef
ADS
Google scholar
|
[187] |
C. M. Wang and X. L. Lei, Linear magnetoresistance on the topological surface, Phys. Rev. B86, 035442 (2012)
CrossRef
ADS
Google scholar
|
[188] |
C. M. Wang and X. L. Lei, Linear magnetotransport in monolayer MoS2, Phys. Rev. B92, 125303 (2015)
CrossRef
ADS
Google scholar
|
[189] |
D.-X. Qu, Y. S. Hor, J. Xiong, R. J. Cava, and N. P. Ong, Quantum oscillations and hall anomaly of surface states in the topological insulator Bi2Te3, Science329, 821 (2010)
CrossRef
ADS
Google scholar
|
[190] |
S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge University Press, 1997
|
[191] |
F. T. Vasko and O. E. Raichev, Quantum Kinetic Theory and Applications: Electrons, Photons, Phonons, Springer Science & Business Media, 2006
|
[192] |
A. A. Abrikosov, Quantum magnetoresistance, Phys. Rev. B58, 2788 (1998)
CrossRef
ADS
Google scholar
|
[193] |
J. Xiong, S. Kushwaha, J. Krizan, T. Liang, R. J. Cava, and N. P. Ong, Anomalous conductivity tensor in the Dirac semimetal Na3Bi, EPL114, 27002 (2016)
CrossRef
ADS
Google scholar
|
[194] |
J. Hu,
CrossRef
ADS
Google scholar
|
[195] |
L. Onsager, Interpretation of the de Haas–van Alphen effect, Philos. Mag.43, 1006 (1952)
CrossRef
ADS
Google scholar
|
[196] |
M. Phillips and V. Aji, Tunable line node semimetals, Phys. Rev. B90, 115111 (2014)
CrossRef
ADS
Google scholar
|
[197] |
W. Chen, H.-Z. Lu, and O. Zilberberg, Weak localization and antilocalization in nodal-line semimetals: Dimensionality and topological effects, arXiv: 1902.06921 (2019)
|
[198] |
K. v. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett.45, 494 (1980)
CrossRef
ADS
Google scholar
|
[199] |
D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall conductance in a twodimensional periodic potential, Phys. Rev. Lett.49, 405 (1982)
CrossRef
ADS
Google scholar
|
[200] |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature438, 197 (2005)
CrossRef
ADS
Google scholar
|
[201] |
Y. Xu, I. Miotkowski, C. Liu, J. Tian, H. Nam, N. Alidoust, J. Hu, C.-K. Shih, M. Z. Hasan, and Y. P. Chen, Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator, Nat. Phys.10, 956 (2014)
CrossRef
ADS
Google scholar
|
[202] |
R. Yoshimi, K. Yasuda, A. Tsukazaki, K. S. Takahashi, N. Nagaosa, M. Kawasaki, and Y. Tokura, Quantum Hall states stabilized in semi-magnetic bilayers of topological insulators, Nat. Commun.6, 8530 (2015)
CrossRef
ADS
Google scholar
|
[203] |
M. Brahlek, N. Bansal, N. Koirala, S. Y. Xu, M. Neupane, C. Liu, M. Z. Hasan, and S. Oh, Topological-metal to band-insulator transition in (Bi1-xInx)2Se3 thin films, Phys. Rev. Lett.109, 186403 (2012)
CrossRef
ADS
Google scholar
|
[204] |
L. Wu, M. Brahlek, R. Valdes Aquilar, A. V. Stier, C. M. Morris, Y. Lubashevsky, L. S. Bilbro, N. Bansal, S. Oh, and N. P. Armitage, A sudden collapse in the transport lifetime across the topological phase transition in (Bi1-xInx)2Se3, Nat. Phys.9, 410 (2013)
CrossRef
ADS
Google scholar
|
[205] |
P. Hosur, Friedel oscillations due to Fermi arcs in Weyl semimetals, Phys. Rev. B86, 195102 (2012)
CrossRef
ADS
Google scholar
|
[206] |
Y. Baum, E. Berg, S. A. Parameswaran, and A. Stern, Current at a distance and resonant transparency in Weyl semimetals, Phys. Rev. X5, 041046 (2015)
CrossRef
ADS
Google scholar
|
[207] |
E. V. Gorbar, V. A. Miransky, I. A. Shovkovy, and P. O. Sukhachov, Origin of dissipative Fermi arc transport in Weyl semimetals, Phys. Rev. B93, 235127 (2016)
CrossRef
ADS
Google scholar
|
[208] |
Y. Ominato and M. Koshino, Magnetotransport in Weyl semimetals in the quantum limit: Role of topological surface states, Phys. Rev. B93, 245304 (2016)
CrossRef
ADS
Google scholar
|
[209] |
T. M. McCormick, S. J. Watzman, J. P. Heremans, and N. Trivedi, Fermi arc mediated entropy transport in topological semimetals, Phys. Rev. B97, 195152 (2018)
CrossRef
ADS
Google scholar
|
[210] |
C. Shekhar,
CrossRef
ADS
Google scholar
|
[211] |
T. Liang, Q. Gibson, M. N. Ali, M. H. Liu, R. J. Cava, and N. P. Ong, Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2, Nat. Mater.14, 280 (2015)
CrossRef
ADS
Google scholar
|
[212] |
P. J. W. Moll, N. L. Nair, T. Helm, A. C. Potter, I. Kimchi, A. Vishwanath, and J. G. Analytis, Transport evidence for Fermi-arc-mediated chirality transfer in the Dirac semimetal Cd3As2, Nature535, 266 (2016)
CrossRef
ADS
Google scholar
|
[213] |
G. Rosenberg, H.-M. Guo, and M. Franz, Wormhole effect in a strong topological insulator, Phys. Rev. B82, 041104 (2010)
CrossRef
ADS
Google scholar
|
[214] |
J. Ruan, S.-K. Jian, H. Yao, H. Zhang, S.-C. Zhang, and D. Xing, Symmetry-protected ideal Weyl semimetal in HgTe-class materials, Nat. Commun.7, 11136 (2016)
CrossRef
ADS
Google scholar
|
[215] |
A. C. Potter, I. Kimchi, and A. Vishwanath, Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals, Nat. Commun.5, 5161 (2014)
CrossRef
ADS
Google scholar
|
[216] |
M. Uchida,
|
[217] |
M. Uchida,
CrossRef
ADS
Google scholar
|
[218] |
T. Schumann, L. Galletti, D. A. Kealhofer, H. Kim, M. Goyal, and S. Stemmer, Observation of the quantum Hall effect in confined films of the three-dimensional Dirac semimetal Cd3As2, Phys. Rev. Lett.120, 016801 (2018)
CrossRef
ADS
Google scholar
|
[219] |
C. Zhang,
CrossRef
ADS
Google scholar
|
[220] |
V. P. Gusynin and S. G. Sharapov, Unconventional integer quantum Hall effect in graphene, Phys. Rev. Lett.95, 146801 (2005)
CrossRef
ADS
Google scholar
|
[221] |
A. A. Zyuzin and A. A. Burkov, Thin topological insulator film in a perpendicular magnetic field, Phys. Rev. B83, 195413 (2011)
CrossRef
ADS
Google scholar
|
[222] |
S. B. Zhang, Y. Y. Zhang, and S. Q. Shen, Robustness of quantum spin Hall effect in an external magnetic field, Phys. Rev. B90, 115305 (2014)
CrossRef
ADS
Google scholar
|
[223] |
S. B. Zhang, H. Z. Lu, and S. Q. Shen, Edge states and integer quantum Hall effect in topological insulator thin films, Sci. Rep.5, 13277 (2015)
CrossRef
ADS
Google scholar
|
[224] |
A. Pertsova, C. M. Canali, and A. H. MacDonald, Quantum Hall edge states in topological insulator nanoribbons, Phys. Rev. B94, 121409 (2016)
CrossRef
ADS
Google scholar
|
[225] |
H. Zheng,
CrossRef
ADS
Google scholar
|
[226] |
E. Y. Ma,
CrossRef
ADS
Google scholar
|
[227] |
M. Kargarian, M. Randeria, and Y.-M. Lu, Are the surface Fermi arcs in Dirac semimetals topologically protected? Proc. Natl. Acad. Sci. USA113, 8648 (2016)
CrossRef
ADS
Google scholar
|
[228] |
J. Cano, B. Bradlyn, Z. Wang, M. Hirschberger, N. P. Ong, and B. A. Bernevig, Chiral anomaly factory: Creating Weyl fermions with a magnetic field, Phys. Rev. B95, 161306 (2017)
CrossRef
ADS
Google scholar
|
[229] |
S. Q. Shen, M. Ma, X. C. Xie, and F. C. Zhang, Resonant spin Hall conductance in two-dimensional electron systems with a Rashba interaction in a perpendicular magnetic field, Phys. Rev. Lett.92, 256603 (2004)
CrossRef
ADS
Google scholar
|
[230] |
M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys.82, 3045 (2010)
CrossRef
ADS
Google scholar
|
[231] |
X.-L. Qi and S.-C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys.83, 1057 (2011)
CrossRef
ADS
Google scholar
|
[232] |
R. Yu, W. Zhang, H.-J. Zhang, S.-C. Zhang, X. Dai, and Z. Fang, Quantized anomalous Hall effect in magnetic topological insulators, Science329, 61 (2010)
CrossRef
ADS
Google scholar
|
[233] |
C.-Z. Chang,
CrossRef
ADS
Google scholar
|
[234] |
L. Fu and C. L. Kane, Superconducting proximity effect and Majorana fermions at the surface of a topological insulator, Phys. Rev. Lett.100, 096407 (2008)
CrossRef
ADS
Google scholar
|
[235] |
A. R. Akhmerov, J. Nilsson, and C. W. J. Beenakker, Electrically detected interferometry of Majorana fermions in a topological insulator, Phys. Rev. Lett.102, 216404 (2009)
CrossRef
ADS
Google scholar
|
[236] |
I. Belopolski,
CrossRef
ADS
Google scholar
|
[237] |
C.-K. Chiu, G. Bian, H. Zheng, J.-X. Yin, S. S. Zhang, D. S. Sanchez, I. Belopolski, S.-Y. Xu, and M. Z. Hasan, Chiral majorana fermion modes on the surface of superconducting topological insulators, EPL123, 47005 (2018)
CrossRef
ADS
Google scholar
|
[238] |
M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Quantum spin Hall insulator state in HgTe quantum wells, Science318, 766 (2007)
CrossRef
ADS
Google scholar
|
[239] |
B. Büttner,
CrossRef
ADS
Google scholar
|
[240] |
A. Mani and C. Benjamin, Probing helicity and the topological origins of helicity via non-local Hanbury–Brown and Twiss correlations, Sci. Rep.7, 6954 (2017)
CrossRef
ADS
Google scholar
|
[241] |
H. Weng, X. Dai, and Z. Fang, Transition-metal pentatelluride ZrTe5 and HfTe5: A paradigm for large-gap quantum spin Hall insulators, Phys. Rev. X4, 011002 (2014)
CrossRef
ADS
Google scholar
|
[242] |
Y. Liu,
CrossRef
ADS
Google scholar
|
[243] |
W. Zhang, R. Yu, W. Feng, Y. Yao, H. Weng, X. Dai, and Z. Fang, Topological aspect and quantum magnetoresistance of β-Ag2Te, Phys. Rev. Lett.106, 156808 (2011)
CrossRef
ADS
Google scholar
|
[244] |
H.-Z. Lu, J. Shi, and S.-Q. Shen, Competition between weak localization and antilocalization in topological surface states, Phys. Rev. Lett.107, 076801 (2011)
CrossRef
ADS
Google scholar
|
[245] |
H.-W. Wang, B. Fu, and S.-Q. Shen, Intrinsic magnetoresistance in three-dimensional Dirac materials with low carrier density, Phys. Rev. B98, 081202 (2018)
CrossRef
ADS
Google scholar
|
[246] |
A. Alexandradinata and L. Glazman, Geometric phase and orbital moment in quantization rules for magnetic breakdown, Phys. Rev. Lett.119, 256601 (2017)
CrossRef
ADS
Google scholar
|
[247] |
A. Alexandradinata, C. Wang, W. Duan, and L. Glazman, Revealing the topology of fermi-surface wave functions from magnetic quantum oscillations, Phys. Rev. X8, 011027 (2018)
CrossRef
ADS
Google scholar
|
[248] |
J. Höller and A. Alexandradinata, Topological Bloch oscillations, Phys. Rev. B98, 024310 (2018)
CrossRef
ADS
Google scholar
|
[249] |
T. E. O’Brien, M. Diez, and C. W. J. Beenakker, Magnetic breakdown and Klein tunneling in a type-II Weyl semimetal, Phys. Rev. Lett.116, 236401 (2016)
CrossRef
ADS
Google scholar
|
[250] |
F. Fei,
CrossRef
ADS
Google scholar
|
[251] |
H. Yang, R. Moessner, and L.-K. Lim, Quantum oscillations in nodal line systems, Phys. Rev. B97, 165118 (2018)
CrossRef
ADS
Google scholar
|
[252] |
L. Oroszlány, B. Dóra, J. Cserti, and A. Cortijo, Topological and trivial magnetic oscillations in nodal loop semimetals, Phys. Rev. B97, 205107 (2018)
CrossRef
ADS
Google scholar
|
[253] |
C. Zhang,
CrossRef
ADS
Google scholar
|
[254] |
Y. Zhang, D. Bulmash, P. Hosur, A. C. Potter, and A. Vishwanath, Quantum oscillations from generic surface Fermi arcs and bulk chiral modes in Weyl semimetals, Sci. Rep.6, 23741 (2016)
CrossRef
ADS
Google scholar
|
[255] |
B. I. Halperin, Possible states for a three-dimensional electron gas in a strong magnetic field, Japanese J. Appl. Phys.26, 1913 (1987)
CrossRef
ADS
Google scholar
|
[256] |
F. Tang,
|
[257] |
H.-Z. Lu, Perspective: 3D quantum Hall effect, Natl. Sci. Rev., nwy082 (2018)
|
[258] |
H. Wang,
CrossRef
ADS
Google scholar
|
[259] |
H. Wang,
|
[260] |
P. Zhang and H. Zhai, Efimov effect in Dirac semi-metals, Front. Phys.13, 137204 (2018)
CrossRef
ADS
Google scholar
|
[261] |
H. Liu, H. Jiang, Z. Wang, R. Joynt, and X. C. Xie, Discrete scale invariance in topological semimetals, arXiv: 1807.02459 (2018)
|
[262] |
H. Weng, C. Fang, Z. Fang, and X. Dai, Topological semimetals with triply degenerate nodal points in θ-phase tantalum nitride, Phys. Rev. B93, 241202 (2016)
CrossRef
ADS
Google scholar
|
[263] |
H. Weng, C. Fang, Z. Fang, and X. Dai, Coexistence of Weyl fermion and massless triply degenerate nodal points, Phys. Rev. B94, 165201 (2016)
CrossRef
ADS
Google scholar
|
[264] |
B. Bradlyn, J. Cano, Z. Wang, M. G. Vergniory, C. Felser, R. J. Cava, and B. A. Bernevig, Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals, Science353 (2016)
CrossRef
ADS
Google scholar
|
[265] |
G. Chang,
CrossRef
ADS
Google scholar
|
[266] |
B. Q. Lv,
CrossRef
ADS
Google scholar
|
[267] |
J.-Z. Ma,
CrossRef
ADS
Google scholar
|
[268] |
J. B. He, D. Chen, W. L. Zhu, S. Zhang, L. X. Zhao, Z. A. Ren, and G. F. Chen, Magnetotransport properties of the triply degenerate node topological semimetal tungsten carbide, Phys. Rev. B95, 195165 (2017)
CrossRef
ADS
Google scholar
|
[269] |
W. L. Zhu, J. B. He, S. Zhang, D. Chen, L. Shan, Z. A. Ren, and G. F. Chen, Magnetotransport properties of the new-type topological semimetal ZrTe, arXiv: 1707.00942 (2017)
|
[270] |
C. Shekhar,
|
[271] |
A. K. Nayak,
CrossRef
ADS
Google scholar
|
[272] |
Z. Wang, M. G. Vergniory, S. Kushwaha, M. Hirschberger, E. V. Chulkov, A. Ernst, N. P. Ong, R. J. Cava, and B. A. Bernevig, Time-reversalbreaking Weyl fermions in magnetic Heusler alloys, Phys. Rev. Lett.117, 236401 (2016)
CrossRef
ADS
Google scholar
|
[273] |
G. Chang,
CrossRef
ADS
Google scholar
|
[274] |
S. Nie, G. Xu, F. B. Prinz, and S.-C. Zhang, Topological semimetal in honeycomb lattice LnSI, Proc. Natl. Acad. Sci. USA114, 10596 (2017)
CrossRef
ADS
Google scholar
|
[275] |
H. Yang, Y. Sun, Y. Zhang, W.-J. Shi, S. S. P. Parkin, and B. Yan, Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn, New J. Phys.19, 015008 (2017)
CrossRef
ADS
Google scholar
|
[276] |
E. Liu,
CrossRef
ADS
Google scholar
|
[277] |
Q. Wang, Y. Xu, R. Lou, Z. Liu, M. Li, Y. Huang, D. Shen, H. Weng, S. Wang, and H. Lei, Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions, Nat. Commun.9, 3681 (2018)
CrossRef
ADS
Google scholar
|
[278] |
S. N. Guin,
|
[279] |
G. Chang,
CrossRef
ADS
Google scholar
|
[280] |
J.-X. Yin,
CrossRef
ADS
Google scholar
|
[281] |
S.-M. Huang,
CrossRef
ADS
Google scholar
|
[282] |
A. A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X. Dai, and B. A. Bernevig, Type-II Weyl semimetals, Nature527, 495 (2015)
CrossRef
ADS
Google scholar
|
[283] |
K. Deng,
CrossRef
ADS
Google scholar
|
[284] |
J. Jiang,
CrossRef
ADS
Google scholar
|
[285] |
Y. Wang,
CrossRef
ADS
Google scholar
|
[286] |
E. Zhang,
CrossRef
ADS
Google scholar
|
[287] |
D. Chen,
|
[288] |
S. Khim,
CrossRef
ADS
Google scholar
|
[289] |
S.-Y. Xu,
CrossRef
ADS
Google scholar
|
[290] |
I. Belopolski,
CrossRef
ADS
Google scholar
|
[291] |
G. Chang,
CrossRef
ADS
Google scholar
|
[292] |
C. Zhong, Y. Chen, Z.-M. Yu, Y. Xie, H. Wang, S. A. Yang, and S. Zhang, Three-dimensional pentagon carbon with a genesis of emergent fermions, Nat. Commun.8, 15641 (2017)
CrossRef
ADS
Google scholar
|
[293] |
W. Chen, H.-Z. Lu, and J.-M. Hou, Topological semimetals with a double-helix nodal link, Phys. Rev. B96, 041102 (2017)
CrossRef
ADS
Google scholar
|
[294] |
Z. Yan, R. Bi, H. Shen, L. Lu, S.-C. Zhang, and Z. Wang, Nodal-link semimetals, Phys. Rev. B96, 041103 (2017)
CrossRef
ADS
Google scholar
|
[295] |
M. Ezawa, Topological semimetals carrying arbitrary Hopf numbers: Fermi surface topologies of a Hopf link, Solomon’s knot, trefoil knot, and other linked nodal varieties, Phys. Rev. B96, 041202 (2017)
CrossRef
ADS
Google scholar
|
[296] |
L.-X. Wang, C.-Z. Li, D.-P. Yu, and Z.-M. Liao, Aharonov–Bohm oscillations in Dirac semimetal Cd3As2 nanowires, Nat. Commun.7, 10769 (2016)
CrossRef
ADS
Google scholar
|
[297] |
H. Zheng,
CrossRef
ADS
Google scholar
|
[298] |
H. Zheng and M. Z. Hasan, Quasiparticle interference on type-I and type-II Weyl semimetal surfaces: A review, Advances in Physics: X3, 1466661 (2018)
CrossRef
ADS
Google scholar
|
[299] |
H. Zheng,
CrossRef
ADS
Google scholar
|
[300] |
G. Chang,
CrossRef
ADS
Google scholar
|
[301] |
S. Wang, B.-C. Lin, W.-Z. Zheng, D. Yu, and Z.-M. Liao, Fano interference between bulk and surface states of a Dirac semimetal Cd3As2 nanowire, Phys. Rev. Lett.120, 257701 (2018)
CrossRef
ADS
Google scholar
|
[302] |
J. Gooth,
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |