Novel transition and Bellerophon state in coupled Stuart–Landau oscillators

Jia-Meng Zhang, Xue Li, Yong Zou, Shu-Guang Guan

PDF(4286 KB)
PDF(4286 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (3) : 33603. DOI: 10.1007/s11467-019-0889-0
Research article
Research article

Novel transition and Bellerophon state in coupled Stuart–Landau oscillators

Author information +
History +

Abstract

We study synchronization in a system of Stuart–Landau oscillators with frequency-weighted coupling. For three typical unimodal frequency distributions, namely, the Lorentzian, the triangle, and the uniform, we found that the first-order transition occurs when the frequency distribution is relatively compact, while the synchronization transition is continuous when it is relatively wide. In both cases, there is a regime of Bellerophon state between the incoherent state and the synchronized state. Remarkably, we revealed novel transition behavior for such coupled oscillators with amplitudes, i.e., the regime of Bellerophon state actually contains two stages. In the first stage, the oscillators achieve chaotic phase synchronization; while in the second stage, oscillators form periodical phase synchronization. Our results suggest that Bellerophon state also exists in coupled oscillators with amplitude dynamics.

Keywords

synchronization / coupled oscillators / Stuart–Landau oscillators

Cite this article

Download citation ▾
Jia-Meng Zhang, Xue Li, Yong Zou, Shu-Guang Guan. Novel transition and Bellerophon state in coupled Stuart–Landau oscillators. Front. Phys., 2019, 14(3): 33603 https://doi.org/10.1007/s11467-019-0889-0

References

[1]
A. Pikvosky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge: Cambridge University Press, 2003
CrossRef ADS Google scholar
[2]
J. Buck, Synchronous rhythmic flashing of fireflies (II), Q. Rev. Biol. 63(3), 265 (1988)
CrossRef ADS Google scholar
[3]
A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol. 16(1), 15 (1967)
CrossRef ADS Google scholar
[4]
G. Buzsáki and A. Draguhn, Neuronal oscillations in cortical networks, Science 304(5679), 1926 (2004)
CrossRef ADS Google scholar
[5]
M. Rohden, A. Sorge, M. Timme, and D. Witthaut, Selforganized synchronization in decentralized power grids, Phys. Rev. Lett. 109(6), 064101 (2012)
CrossRef ADS Google scholar
[6]
K. Wiesenfeld, P. Colet, and S. H. Strogatz, Synchronization transitions in a disordered Josephson series array, Phys. Rev. Lett. 76(3), 404 (1996)
CrossRef ADS Google scholar
[7]
B. Eckhardt, E. Ott, S. H. Strogatz, D. M. Abrams, and A. McRobie, Modeling walker synchronization on the Millennium Bridge, Phys. Rev. E 75(2), 021110 (2007)
CrossRef ADS Google scholar
[8]
H. Chen, Y. Sun, J. Gao, C. Xu, and Z. Zheng, Order parameter analysis of synchronization transitions on star networks, Front. Phys. 12(6), 120504 (2017)
CrossRef ADS Google scholar
[9]
D. Yuan, J. L. Tian, F. Lin, D. W. Ma, J. Zhang, H. T. Cui, and Y. Xiao, Periodic synchronization in a system of coupled phase oscillators with attractive and repulsive interactions, Front. Phys. 13(3), 130504 (2018)
CrossRef ADS Google scholar
[10]
X. Huang, J. Dong, W. Jia, Z. Zheng, and C. Xu, Dynamics of clustering patterns in the Kuramoto model with unidirectional coupling, Front. Phys. 13(5), 130506 (2018)
CrossRef ADS Google scholar
[11]
Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer, 1984
CrossRef ADS Google scholar
[12]
S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Physica D 143(1–4), 1 (2000)
CrossRef ADS Google scholar
[13]
F. A. Rodrigues, T. K. D. M. Peron, P. Ji, and J. Kurths, The Kuramoto model in complex networks, Phys. Rep. 610, 1 (2016)
CrossRef ADS Google scholar
[14]
H. Hong and S. H. Strogatz, Kuramoto model of coupled oscillators with positive and negative coupling parameters: An example of conformist and contrarian oscillators, Phys. Rev. Lett. 106(5), 054102 (2011)
CrossRef ADS Google scholar
[15]
D. Iatsenko, S. Petkoski, P. V. E. McClintock, and A. Stefanovska, Stationary and traveling wave states of the Kuramoto model with an arbitrary distribution of frequencies and coupling strengths, Phys. Rev. Lett. 110(6), 064101 (2013)
CrossRef ADS Google scholar
[16]
J. D. Crawford, Amplitude expansions for instabilities in populations of globally-coupled oscillators, J. Stat. Phys. 74(5), 1047 (1994)
CrossRef ADS Google scholar
[17]
Y. Kuramoto and D. Battogtokh, Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, arXiv: cond-mat/0210694 (2002)
[18]
I. Omelchenko, O. E. Omel’chenko, P. Hövel, and E. Schöll, When nonlocal coupling between oscillators becomes stronger: Patched synchrony or multichimera states, Phys. Rev. Lett. 110(22), 224101 (2013)
CrossRef ADS Google scholar
[19]
D. M. Abrams, R. Mirollo, S. H. Strogatz, and D. A. Wiley, Solvable model for chimera states of coupled oscillators, Phys. Rev. Lett. 101(8), 084103 (2008)
CrossRef ADS Google scholar
[20]
H. Wang and X. Li, Synchronization and chimera states of frequency-weighted Kuramoto-oscillator networks, Phys. Rev. E 83(6), 066214 (2011)
CrossRef ADS Google scholar
[21]
S. Boccaletti, J. A. Almendral, S. Guan, I. Leyva, Z. Liu, I. Sendiña-Nadal, Z. Wang, and Y. Zou, Explosive transitions in complex networks’ structure and dynamics: Percolation and synchronization, Phys. Rep. 660, 1 (2016)
CrossRef ADS Google scholar
[22]
H. Bi, X. Hu, S. Boccaletti, X. Wang, Y. Zou, Z. Liu, and S. Guan, Coexistence of quantized, time dependent, clusters in globally coupled oscillators, Phys. Rev. Lett. 117(20), 204101 (2016)
CrossRef ADS Google scholar
[23]
W. Zhou, Y. Zou, J. Zhou, Z. Liu, and S. Guan, Intermittent Bellerophon state in frequency-weighted Kuramoto model, Chaos 26(12), 123117 (2016)
CrossRef ADS Google scholar
[24]
H. Bi, Y. Li, L. Zhou, and S. Guan, Nontrivial standing wave state in frequency-weighted Kuramoto model, Front. Phys. 12(3), 126801 (2017)
CrossRef ADS Google scholar
[25]
Y. Xiao, W. Jia, C. Xu, H. Lü, and Z. Zheng, Synchronization of phase oscillators in the generalized Sakaguchi-Kuramoto model, Europhys. Lett. 118(6), 60005 (2017)
CrossRef ADS Google scholar
[26]
C. Xu, S. Boccaletti, S. Guan, and Z. Zheng, Origin of Bellerophon states in globally coupled phase oscillators, Phys. Rev. E 98, 050202(R) (2018)
[27]
D. Yuan, M. Zhang, and J. Yang, Dynamics of the Kuramoto model in the presence of correlation between distributions of frequencies and coupling strengths, Phys. Rev. E 89(1), 012910 (2014)
CrossRef ADS Google scholar
[28]
T. Qiu, S. Boccaletti, I. Bonamassa, Y. Zou, J. Zhou, Z. Liu, and S. Guan, Synchronization and Bellerophon states in conformist and contrarian oscillators, Sci. Rep. 6(1), 36713 (2016)
CrossRef ADS Google scholar
[29]
T. Qiu, I. Bonamassa, S. Boccaletti, Z. Liu, and S. Guan, Rhythmic synchronization and hybrid collective states of globally coupled oscillators, Sci. Rep. 8(1), 12950 (2018)
CrossRef ADS Google scholar
[30]
X. Li, T. Qiu, S. Boccaletti, I. Sendiña-Nadal, Z. Liu, and S. Guan, Synchronization clusters with quantum traits emerge as the result of a global coupling among classical phase oscillators (submitted)

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(4286 KB)

Accesses

Citations

Detail

Sections
Recommended

/