Single-step multipartite entangled states generation from coupled circuit cavities
Xiao-Tao Mo, Zheng-Yuan Xue
Single-step multipartite entangled states generation from coupled circuit cavities
Green–Horne–Zeilinger states are a typical type of multipartite entangled states, which plays a central role in quantum information processing. For the generation of multipartite entangled states, the singlestep method is more preferable as the needed time will not increase with the increasing of the qubit number. However, this scenario has a strict requirement that all two-qubit interaction strengths should be the same, or the generated state will be of low quality. Here, we propose a scheme for generating multipartite entangled states of superconducting qubits, from a coupled circuit cavities scenario, where we rigorously achieve the requirement via adding an extra z-direction ac classical field for each qubit, leading the individual qubit-cavity coupling strength to be tunable in a wide range, and thus can be tuned to the same value. Meanwhile, in order to obtain our wanted multi-qubits interaction, xdirection ac classical field for each qubit is also introduced. By selecting the appropriate parameters, we numerically shown that high-fidelity multi-qubit GHZ states can be generated. In addition, we also show that the coupled cavities scenario is better than a single cavity case. Therefore, our proposal represents a promising alternative for multipartite entangled states generation.
quantum information processing / quantum entanglement / quantum state engineering
[1] |
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000
|
[2] |
R. Raussendorf and H. J. Briegel, A one-way quantum computer, Phys. Rev. Lett. 86(22), 5188 (2001)
CrossRef
ADS
Google scholar
|
[3] |
M. Hillery, V. Bužek, and A. Berthiaume, Quantum secret sharing, Phys. Rev. A 59(3), 1829 (1999)
CrossRef
ADS
Google scholar
|
[4] |
S. Lloyd, Universal quantum simulators, Science 273(5278), 1073 (1996)
CrossRef
ADS
Google scholar
|
[5] |
A. J. Leggett, Realism and the physical world, Rep. Prog. Phys. 71(2), 022001 (2008)
CrossRef
ADS
Google scholar
|
[6] |
P. Zoller, T. Beth, D. Binosi, R. Blatt, H. Briegel, D. Bruss, T. Calarco, J. I. Cirac, D. Deutsch, J. Eisert, A. Ekert, C. Fabre, N. Gisin, P. Grangiere, M. Grassl, S. Haroche, A. Imamoglu, A. Karlson, J. Kempe, L. Kouwenhoven, S. Kröll, G. Leuchs, M. Lewenstein, D. Loss, N. Lütkenhaus, S. Massar, J. E. Mooij, M. B. Plenio, E. Polzik, S. Popescu, G. Rempe, A. Sergienko, D. Suter, J. Twamley, G. Wendin, R. Werner, A. Winter, J. Wrachtrup, and A. Zeilinger, Quantum information processing and communication, Eur. Phys. J. D 36(2), 203(2005)
CrossRef
ADS
Google scholar
|
[7] |
D. M. Greenberger, M. Horne, A. Shimony, and A. Zeilinger, Bells theorem without inequalities, Am. J. Phys. 58(12), 1131 (1990)
CrossRef
ADS
Google scholar
|
[8] |
M. Neeley, R. C. Bialczak, M. Lenander, E. Lucero, M. Mariantoni, A. D. O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner, Y. Yin, T. Yamamoto, A. N. Cleland, and J. M. Martinis, Generation of three-qubit entangled states using superconducting phase qubits, Nature 467(7315), 570 (2010)
CrossRef
ADS
Google scholar
|
[9] |
C. P. Yang, Q. P. Su, and F. Nori, Entanglement generation and quantum information transfer between spatially-separated qubits in different cavities, New J. Phys. 15(11), 115003 (2013)
CrossRef
ADS
Google scholar
|
[10] |
R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O’Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, Superconducting quantum circuits at the surface code threshold for fault tolerance, Nature 508(7497), 500 (2014)
CrossRef
ADS
Google scholar
|
[11] |
S. L. Su, X. Q. Shao, H. F. Wang, and S. Zhang, Scheme for entanglement generation in an atom-cavity system via dissipation, Phys. Rev. A 90(5), 054302 (2014)
CrossRef
ADS
Google scholar
|
[12] |
S. L. Su, Q. Guo, H. F. Wang, and S. Zhang, Simplified scheme for entanglement preparation with Rydberg pumping via dissipation, Phys. Rev. A 92(2), 022328 (2015)
CrossRef
ADS
Google scholar
|
[13] |
H. Paik, A. Mezzacapo, M. Sandberg, D. T. McClure, B. Abdo, A. D. Córcoles, O. Dial, D. F. Bogorin, B. L. T. Plourde, M. Steffen, A. W. Cross, J. M. Gambetta, and J. M. Chow, Experimental demonstration of a resonatorinduced phase gate in a multiqubit circuit-QED system, Phys. Rev. Lett. 117(25), 250502 (2016)
CrossRef
ADS
Google scholar
|
[14] |
C. P. Yang, Q. P. Su, S. B. Zheng, and F. Nori, Entangling superconducting qubits in a multi-cavity system, New J. Phys. 18(1), 013025 (2016)
CrossRef
ADS
Google scholar
|
[15] |
L. Dong, Y. F. Lin, Q. Y. Li, H. K. Dong, X. M. Xiu, and Y. J. Gao, Generation of three-photon polarizationentangled decoherence-free states, Ann. Phys. 371, 287 (2016)
CrossRef
ADS
Google scholar
|
[16] |
M. X. Dong, W. Zhang, Z. B. Hou, Y. C. Yu, S. Shi, D. S. Ding, and B. S. Shi, Experimental realization of narrowband four-photon Greenberger–Horne–Zeilinger state in a single cold atomic ensemble, Opt. Lett. 42(22), 4691 (2017)
CrossRef
ADS
Google scholar
|
[17] |
X. Q. Shao, D. X. Li, Y. Q. Ji, J. H. Wu, and X. X. Yi, Groundstate blockade of Rydberg atoms and application in entanglement generation, Phys. Rev. A 96(1), 012328 (2017)
CrossRef
ADS
Google scholar
|
[18] |
R. Y. Yan, Z. B. Feng, C. L. Zhang, M. Li, X. J. Lu, and Y. Q. Zhou, Fast generations of entangled states between a transmon qubit and microwave photons via shortcuts to adiabaticity, Laser Phys. Lett. 15(11), 115205 (2018)
CrossRef
ADS
Google scholar
|
[19] |
C. P. Yang, and Z. F. Zheng, Deterministic generation of Greenberger-Horne-Zeilinger entangled states of cat-state qubits in circuit QED, Opt. Lett. 43(20), 5126 (2018)
CrossRef
ADS
Google scholar
|
[20] |
X. L. Wang, L. K. Chen, W. Li, H. L. Huang, C. Liu, C. Chen, Y. H. Luo, Z. E. Su, D. Wu, Z. D. Li, H. Lu, Y. Hu, X. Jiang, C. Z. Peng, L. Li, N. L. Liu, Y. A. Chen, C. Y. Lu, and J. W. Pan, Experimental ten-photon entanglement, Phys. Rev. Lett. 117(21), 210502 (2016)
CrossRef
ADS
Google scholar
|
[21] |
Z. Jin, S. L. Su, A. D. Zhu, H. F. Wang, and S. Zhang, Engineering multipartite steady entanglement of distant atoms via dissipation, Front. Phys. 13(5), 134209 (2018)
CrossRef
ADS
Google scholar
|
[22] |
K. Mølmer and A. Sørensen, Multiparticle entanglement of hot trapped ions, Phys. Rev. Lett. 82(9), 1835 (1999)
CrossRef
ADS
Google scholar
|
[23] |
S. B. Zheng, One-step synthesis of multiatom Greenberger-Horne-Zeilinger states, Phys. Rev. Lett. 87(23), 230404 (2001)
CrossRef
ADS
Google scholar
|
[24] |
F. Plastina, R. Fazio, and G. Massimo Palma, Macroscopic entanglement in Josephson nanocircuits, Phys. Rev. B 64(11), 113306 (2001)
CrossRef
ADS
Google scholar
|
[25] |
S. B. Zheng, Quantum-information processing and multiatom-entanglement engineering with a thermal cavity, Phys. Rev. A 66(6), 060303 (2002)
CrossRef
ADS
Google scholar
|
[26] |
D. I. Tsomoko, S. Ashhab, and F. Nori, Fully connected net-work of superconducting qubits in a cavity, New J. Phys. 10(11), 113020 (2008)
CrossRef
ADS
Google scholar
|
[27] |
A. Galiautdinov and J. M. Martinis, Maximally entangling tripartite protocols for Josephson phase qubits, Phys. Rev. A 78, 010305(R) (2008)
|
[28] |
J. Zhang, Y. X. Liu, C. W. Li, T. J. Tarn, and F. Nori, Generating stationary entangled states in superconducting qubits, Phys. Rev. A 79(5), 052308 (2009)
CrossRef
ADS
Google scholar
|
[29] |
C. L. Hutchison, J. M. Gambetta, A. Blais, and F. K. Wilhelm, Quantum trajectory equation for multiple qubits in circuit QED: Generating entanglement by measurement, Can. J. Phys. 87(3), 225 (2009)
CrossRef
ADS
Google scholar
|
[30] |
Y. D. Wang, S. Chesi, D. Loss, and C. Bruder, One-step multiqubit Greenberger–Horne–Zeilinger state generation in a circuit QED system, Phys. Rev. B 81(10), 104524 (2010)
CrossRef
ADS
Google scholar
|
[31] |
S. Aldana, Y. D. Wang, and C. Bruder, Greenberger-Horne-Zeilinger generation protocol for N superconducting transmon qubits capacitively coupled to a quantum bus, Phys. Rev. B 84(13), 134519 (2011)
CrossRef
ADS
Google scholar
|
[32] |
T. Monz, P. Schindler, J. T. Barreiro, M. Chwalla, D. Nigg, W. A. Coish, M. Harlander, W. Hansel, M. Hennrich, and R. Blatt, 14-qubit entanglement: Creation and coherence, Phys. Rev. Lett. 106(13), 130506 (2011)
CrossRef
ADS
Google scholar
|
[33] |
Y. P. Zhong, D. Xu, P. Wang, C. Song, Q. J.Guo, W. X. Liu, K. Xu, B. X. Xia, C. Y. Lu, S. Han, J. W. Pan, and H. Wang, Emulating anyonic fractional statistical behavior in a superconducting quantum circuit, Phys. Rev. Lett. 117(11), 110501 (2016)
CrossRef
ADS
Google scholar
|
[34] |
C. Song, K. Xu, W. Liu, C. Yang, S. B. Zheng, H. Deng, Q. Xie, K. Huang, Q. Guo, L. Zhang, P. Zhang, D. Xu, D. Zheng, X. Zhu, H. Wang, Y. A. Chen, C. Y. Lu, S. Han, and J. W. Pan, 10-qubit entanglement and parallel logic operations with a superconducting circuit, Phys. Rev. Lett. 119(18), 180511 (2017)
CrossRef
ADS
Google scholar
|
[35] |
Y. J. Fan, Z. F. Zheng, Y. Zhang, D. M. Lu, and C. P. Yang, One-step implementation of a multi-target-qubit controlled phase gate with cat-state qubits in circuit QED, Front. Phys. 14(2), 21602 (2019)
CrossRef
ADS
Google scholar
|
[36] |
J. Q. You and F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474(7353), 589 (2011)
CrossRef
ADS
Google scholar
|
[37] |
M. H. Devoret and R. J. Schoelkopf, Superconducting circuits for quantum information: An outlook, Science 339(6124), 1169 (2013)
CrossRef
ADS
Google scholar
|
[38] |
X. Gu, A. F. Kockum, A. Miranowicz, Y. Liu, and F. Nori, Microwave photonics with superconducting quantum circuits, Phys. Rep. 718-719, 1 (2017)
CrossRef
ADS
Google scholar
|
[39] |
E. Solano, G. S. Agarwal, and H. Walther, Strongdriving-assisted multipartite entanglement in cavity QED, Phys. Rev. Lett. 90(2), 027903 (2003)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |