Semiclassical dynamics and nonlinear charge current

Yang Gao

PDF(1755 KB)
PDF(1755 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (3) : 33404. DOI: 10.1007/s11467-019-0887-2
REVIEW ARTICLE
REVIEW ARTICLE

Semiclassical dynamics and nonlinear charge current

Author information +
History +

Abstract

Electron conductivity is an important material property that can provide a wealth of information about the underlying system. Especially, the response of the conductivity with respect to electromagnetic fields corresponds to various nonlinear charge currents, which have distinct symmetry requirements and hence can be used as efficient probes of different systems. To help the band-structure engineering of such nonlinear currents, a universal treatment of electron dynamics up to second order expressed in the basis of the unperturbed states are highly useful. In this work, we review the general semiclassical framework of the nonlinear charge currents.

Keywords

nonlinear charge current / nonlinear electron dynamics / nonlinear anomalous Hall effect / linear magnetoresistance / negative longitudinal magnetoresistance / Berry curvature / quantum metric / positional shift

Cite this article

Download citation ▾
Yang Gao. Semiclassical dynamics and nonlinear charge current. Front. Phys., 2019, 14(3): 33404 https://doi.org/10.1007/s11467-019-0887-2

References

[1]
N. W. Ashcroft and M. Mermin, Solid State Physics, Harcourt, Orlando, New York, 1976
[2]
N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Anomalous Hall effect, Rev. Mod. Phys.82(2), 1539 (2010)
CrossRef ADS Google scholar
[3]
D. Xiao, M. C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys.82(3), 1959 (2010)
CrossRef ADS Google scholar
[4]
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys.83(4), 1057 (2011)
CrossRef ADS Google scholar
[5]
T. Morimoto and N. Nagaosa, Topological nature of nonlinear optical effects in solids, Sci. Adv.2(5), e1501524 (2016)
CrossRef ADS Google scholar
[6]
S. Zhong, J. E. Moore, and I. Souza, Gyrotropic magnetic effect and the magnetic moment on the Fermi surface, Phys. Rev. Lett.116(7), 077201 (2016)
CrossRef ADS Google scholar
[7]
J. Ma and D. A. Pesin, Chiral magnetic effect and natural optical activity in metals with or without Weyl points, Phys. Rev. B92(23), 235205 (2015)
CrossRef ADS Google scholar
[8]
D. T. Son and B. Z. Spivak, Chiral anomaly and classical negative magnetoresistance of Weyl metals, Phys. Rev. B88(10), 104412 (2013)
CrossRef ADS Google scholar
[9]
N. Armitage, E. Mele, and A. Vishwanath, Macroscopic polarization in crystalline dielectrics: The geometric phase approach, Rev. Mod. Phys.66, 899 (2018)
CrossRef ADS Google scholar
[10]
The highest order of τ is the same as the highest order of the field, which is the property of the asymptotic solution to the Boltzmann equation, as implied in Eq. (64).
[11]
J. Zak ,Magnetic translation group, Phys. Rev.134(6A), A1602 (1964)
CrossRef ADS Google scholar
[12]
J. Zak ,Magnetic translation group (II): Irreducible representations, Phys. Rev.134(6A), A1607 (1964)
CrossRef ADS Google scholar
[13]
D. R. Hofstadter, Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields, Phys. Rev. B14(6), 2239 (1976)
CrossRef ADS Google scholar
[14]
M. C. Chang and Q. Niu, Berry phase, hyperorbits, and the Hofstadter spectrum, Phys. Rev. Lett.75(7), 1348 (1995)
CrossRef ADS Google scholar
[15]
G. Sundaram and Q. Niu, Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects, Phys. Rev. B59(23), 14915 (1999)
CrossRef ADS Google scholar
[16]
D. Culcer, Y. Yao, and Q. Niu, Coherent wave-packet evolution in coupled bands, Phys. Rev. B72(8), 085110 (2005)
CrossRef ADS Google scholar
[17]
R. Shindou and K. I. Imura, Noncommutative geometry and non-Abelian Berry phase in the wave-packet dynamics of Bloch electrons, Nucl. Phys. B720(3), 399 (2005)
CrossRef ADS Google scholar
[18]
M.-C. Chang and Q. Niu, Berry curvature, orbital moment, and effective quantum theory of electrons in electromagnetic fields, J. Phys.: Condens. Matter20, 193202 (2008)
CrossRef ADS Google scholar
[19]
M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. Lond. A Math. Phys. Sci.392, 45 (1984)
CrossRef ADS Google scholar
[20]
D. Xiao, J. Shi, and Q. Niu, Berry phase correction to electron density of states in solids, Phys. Rev. Lett.95(13), 137204 (2005)
CrossRef ADS Google scholar
[21]
J. E. Moore and J. Orenstein, Confinement-Induced Berry phase and helicity-dependent photocurrents, Phys. Rev. Lett.105(2), 026805 (2010)
CrossRef ADS Google scholar
[22]
S. Zhong, J. Orenstein, and J. E. Moore, Optical gyrotropy from axion electrodynamics in momentum space, Phys. Rev. Lett.115(11), 117403 (2015)
CrossRef ADS Google scholar
[23]
T. Morimoto, S. Zhong, J. Orenstein, and J. E. Moore, Semiclassical theory of nonlinear magneto-optical responses with applications to topological Dirac/Weyl semimetals, Phys. Rev. B94(24), 245121 (2016)
CrossRef ADS Google scholar
[24]
E. Deyo, L. E. Golub, E. L. Ivchenko, and B. Spivak, Semiclassical theory of the photogalvanic effect in noncentrosymmetric systems, arXiv: 0904.1917 (2019)
[25]
R. Resta, Manifestations of Berry’s phase in molecules and condensed matter, J. Phys.: Condens. Matter12(9), R107 (2000)
CrossRef ADS Google scholar
[26]
R. D. King-Smith and D. Vanderbilt, Theory of polarization of crystalline solids, Phys. Rev. B47, 1651(R) (1993)
CrossRef ADS Google scholar
[27]
R. Resta, Macroscopic polarization in crystalline dielectrics: The geometric phase approach, Rev. Mod. Phys.66(3), 899 (1994)
CrossRef ADS Google scholar
[28]
M. C. Chang, and Q. Niu, Berry phase, hyperorbits, and the Hofstadter spectrum: Semiclassical dynamics in magnetic Bloch bands, Phys. Rev. B53(11), 7010 (1996)
CrossRef ADS Google scholar
[29]
I. Souza and D. Vanderbilt, Dichroic f-sum rule and the orbital magnetization of crystals, Phys. Rev. B77(5), 054438 (2008)
CrossRef ADS Google scholar
[30]
W. Yao, D. Xiao, and Q. Niu, Valley-dependent optoelectronics from inversion symmetry breaking, Phys. Rev. B77(23), 235406 (2008)
CrossRef ADS Google scholar
[31]
L. L. Foldy and S. A. Wouthuysen, On the Dirac theory of spin 1/2 particles and its non-relativistic limit, Phys. Rev.78(1), 29 (1950)
CrossRef ADS Google scholar
[32]
E. Blount, Extension of the Foldy–Wouthuysen transformation, Phys. Rev.128(5), 2454 (1962)
CrossRef ADS Google scholar
[33]
D. Xiao, Y. Yao, Z. Fang, and Q. Niu, Berry-phase effect in anomalous thermoelectric transport, Phys. Rev. Lett.97(2), 026603 (2006)
CrossRef ADS Google scholar
[34]
T. Thonhauser, D. Ceresoli, D. Vanderbilt, and R. Resta, Orbital magnetization in periodic insulators, Phys. Rev. Lett.95(13), 137205 (2005)
CrossRef ADS Google scholar
[35]
D. Ceresoli, T. Thonhauser, D. Vanderbilt, and R. Resta, Orbital magnetization in crystalline solids: Multi-band insulators, Chern insulators, and metals, Phys. Rev. B74(2), 024408 (2006)
CrossRef ADS Google scholar
[36]
O. Gat and J. E. Avron, Magnetic fingerprints of fractal spectra and the duality of Hofstadter models, New J. Phys.5, 44 (2003)
CrossRef ADS Google scholar
[37]
O. Gat, and J. E. Avron, Semiclassical analysis and the magnetization of the Hofstadter model, Phys. Rev. Lett.91(18), 186801 (2003)
CrossRef ADS Google scholar
[38]
J. Shi, G. Vignale, D. Xiao, and Q. Niu, Quantum theory of orbital magnetization and its generalization to interacting systems, Phys. Rev. Lett.99(19), 197202 (2007)
CrossRef ADS Google scholar
[39]
T. Qin, Q. Niu, and J. Shi, Energy magnetization and the thermal Hall effect, Phys. Rev. Lett.107(23), 236601 (2011)
CrossRef ADS Google scholar
[40]
Y. Gao, S. A. Yang, and Q. Niu, Field Induced Positional Shift of Bloch electrons and its dynamical implications, Phys. Rev. Lett.112(16), 166601 (2014)
CrossRef ADS Google scholar
[41]
Y. Gao, S. A. Yang, and Q. Niu, Geometrical effects in orbital magnetic susceptibility, Phys. Rev. B91(21), 214405 (2015)
CrossRef ADS Google scholar
[42]
E. Blount, Bloch electrons in a magnetic field, Phys. Rev.126(5), 1636 (1962)
CrossRef ADS Google scholar
[43]
J. P. Provost, and G. Vallee, Riemannian structure on manifolds of quantum states, Commun. Math. Phys.76(3), 289 (1980)
CrossRef ADS Google scholar
[44]
T. Neupert, C. Chamon, and C. Mudry, Measuring the quantum geometry of Bloch bands with current noise, Phys. Rev. B87(24), 245103 (2013)
CrossRef ADS Google scholar
[45]
J. Anandan and Y. Aharonov, Geometry of quantum evolution, Phys. Rev. Lett.65(14), 1697 (1990)
CrossRef ADS Google scholar
[46]
R. Resta, The insulating state of matter: A geometrical theory, Eur. Phys. J. B79(2), 121 (2011)
CrossRef ADS Google scholar
[47]
M. V. Berry, Quantum phase corrections from adiabatic iteration, Proc. R. Soc. Lond. A414(1846), 31 (1987)
CrossRef ADS Google scholar
[48]
A. M. Essin, A. M. Turner, J. E. Moore, and D. Vanderbilt, Orbital magnetoelectric coupling in band insulators, Phys. Rev. B81(20), 205104 (2010)
CrossRef ADS Google scholar
[49]
L. Onsager, Interpretation of the de Haas–van Alphen effect, Philos. Mag.43(344), 1006 (1952)
CrossRef ADS Google scholar
[50]
K. Reijnders, T. Tudorovskiy, and M. Katsnelson, Semiclassical theory of potential scattering for massless Dirac fermions, Ann. Phys.333, 155 (2013)
CrossRef ADS Google scholar
[51]
M. C. Gutzwiller, Periodic orbits and classical quantization conditions, J. Math. Phys.12(3), 343 (1971)
CrossRef ADS Google scholar
[52]
M. Wilkinson, An example of phase holonomy in WKB theory, J. Phys. A17(18), 3459 (1984)
CrossRef ADS Google scholar
[53]
R. Rammal, Landau level spectrum of Bloch electrons in a honeycomb lattice, J. Phys. France46(8), 1345 (1985)
CrossRef ADS Google scholar
[54]
G. P. Mikitik and Y. Sharlai, Manifestation of Berry’s phase in metal physics, Phys. Rev. Lett.82(10), 2147 (1999)
CrossRef ADS Google scholar
[55]
P. Carmier and D. Ullmo, Berry phase in graphene: Semiclassical perspective, Phys. Rev. B77(24), 245413 (2008)
CrossRef ADS Google scholar
[56]
J. N. Fuchs, F. Piéchon, M. O. Goerbig, and G. Montambaux, Topological Berry phase and semiclassical quantization of cyclotron orbits for two dimensional electrons in coupled band models., Eur. Phys. J. B77(3), 351 (2010)
CrossRef ADS Google scholar
[57]
Y. Gao and Q. Niu, Zero-field magnetic response functions in Landau levels, Proc. Natl. Acad. Sci. USA114(28), 7295 (2017)
CrossRef ADS Google scholar
[58]
A. A. Taskin, K. Segawa, and Y. Ando, Oscillatory angular dependence of the magnetoresistance in a topological insulator Bi1-xSbx, Phys. Rev. B82(12), 121302 (2010)
CrossRef ADS Google scholar
[59]
J. G. Analytis, R. D. McDonald, S. C. Riggs, J. H. Chu, G. S. Boebinger, and I. R. Fisher, Two-dimensional surface state in the quantum limit of a topological insulator, Nat. Phys.6(12), 960 (2010)
CrossRef ADS Google scholar
[60]
Z. Ren, A. A. Taskin, S. Sasaki, K. Segawa, and Y. Ando, Large bulk resistivity and surface quantum oscillations in the topological insulator Bi2Te2Se, Phys. Rev. B82(24), 241306 (2010)
CrossRef ADS Google scholar
[61]
B. Sacépé, J. B. Oostinga, J. Li, A. Ubaldini, N. J. Couto, E. Giannini, and A. F. Morpurgo, Gate-tuned normal and superconducting transport at the surface of a topological insulator, Nat. Commun.2, 575 (2011)
CrossRef ADS Google scholar
[62]
C. Brüne, C. X. Liu, E. G. Novik, E. M. Hankiewicz, H. Buhmann, Y. L. Chen, X. L. Qi, Z. X. Shen, S. C. Zhang, and L. W. Molenkamp, Quantum Hall effect from the topological surface states of strained bulk HgTe, Phys. Rev. Lett.106(12), 126803 (2011)
CrossRef ADS Google scholar
[63]
F. Xiu, L. He, Y. Wang, L. Cheng, L. T. Chang, M. Lang, G. Huang, X. Kou, Y. Zhou, X. Jiang, Z. Chen, J. Zou, A. Shailos, and K. L. Wang, Manipulating surface states in topological insulator nanoribbons, Nat. Nanotechnol.6(4), 216 (2011)
CrossRef ADS Google scholar
[64]
F. X. Xiang, X. L. Wang, M. Veldhorst, S. X. Dou, and M. S. Fuhrer, Observation of topological transition of Fermi surface from a spindle torus to a torus in bulk Rashba spin-split BiTeCl, Phys. Rev. B92(3), 035123 (2015)
CrossRef ADS Google scholar
[65]
G. Gómez-Santos, and T. Stauber, Measurable lattice effects on the charge and magnetic response in graphene, Phys. Rev. Lett.106(4), 045504 (2011)
CrossRef ADS Google scholar
[66]
A. Raoux, M. Morigi, J. N. Fuchs, F. Piéchon, and G. Montambaux, From dia- to paramagnetic orbital susceptibility of massless fermions, Phys. Rev. Lett.112(2), 026402 (2014)
CrossRef ADS Google scholar
[67]
M. Ogata and H. Fukuyama, Orbital magnetism of Bloch electrons (I): General formula, J. Phys. Soc. Jpn.84(12), 124708 (2015)
CrossRef ADS Google scholar
[68]
In Ref. [67], it is found that except the energy polarization contribution, all the other terms are consistent. For the energy polarization contribution, Ref. [41] contains a typo. When inserting the second order energy in Eq. (42), the energy polarization in Ref. [41] has an additional 1/4 factor by mistake. After removing such factor as given in Eq. (43), the energy polarization has the same expression with Eq. (2.31) in Ref. [67].
[69]
N. Marzari and D. Vanderbilt, Maximally localized generalized Wannier functions for composite energy bands, Phys. Rev. B56(20), 12847 (1997)
CrossRef ADS Google scholar
[70]
I. Souza, N. Marzari, and D. Vanderbilt, Maximally localized Wannier functions for entangled energy bands, Phys. Rev. B65(3), 035109 (2001)
CrossRef ADS Google scholar
[71]
J. R. Yates, X. Wang, D. Vanderbilt, and I. Souza, Spectral and Fermi surface properties from Wannier interpolation, Phys. Rev. B75(19), 195121 (2007)
CrossRef ADS Google scholar
[72]
N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt, Maximally localized Wannier functions: Theory and applications, Rev. Mod. Phys.84(4), 1419 (2012)
CrossRef ADS Google scholar
[73]
M. M. Vazifeh and M. Franz, Electromagnetic response of Weyl semimetals, Phys. Rev. Lett.111(2), 027201 (2013)
CrossRef ADS Google scholar
[74]
L. Fu, and E. Berg, Odd-parity topological superconductors: Theory and application to CuxBi2Se3, Phys. Rev. Lett.105(9), 097001 (2010)
CrossRef ADS Google scholar
[75]
H. K. Pal and D. L. Maslov, Necessary and sufficient condition for longitudinal magnetoresistance, Phys. Rev. B81(21), 214438 (2010)
CrossRef ADS Google scholar
[76]
K. Ohgushi, S. Murakami, and N. Nagaosa, Spin anisotropy and quantum Hall effect in the kagomé lattice: Chiral spin state based on a ferromagnet, Phys. Rev. B62(10), R6065 (2000)
CrossRef ADS Google scholar
[77]
R. Shindou and N. Nagaosa, Orbital ferromagnetism and anomalous Hall effect in antiferromagnets on the distorted fcc Lattice, Phys. Rev. Lett.87(11), 116801 (2001)
CrossRef ADS Google scholar
[78]
M. Taillefumier, B. Canals, C. Lacroix, V. K. Dugaev, and P. Bruno, Anomalous Hall effect due to spin chirality in the Kagomé lattice, Phys. Rev. B74(8), 085105 (2006)
CrossRef ADS Google scholar
[79]
A. Kalitsov, B. Canals, and C. Lacroix, Anomalous Hall effect due to magnetic chirality in the pyrochlore lattice, J. Phys. Conf. Ser.145, 012020 (2009)
CrossRef ADS Google scholar
[80]
H. Takatsu, S. Yonezawa, S. Fujimoto, and Y. Maeno, Unconventional anomalous Hall effect in the metallic triangular-lattice magnet PdCrO2, Phys. Rev. Lett.105(13), 137201 (2010)
CrossRef ADS Google scholar
[81]
M. Udagawa and R. Moessner, Anomalous Hall effect from frustration-tuned scalar chirality distribution in Pr2Ir2O7, Phys. Rev. Lett.111(3), 036602 (2013)
CrossRef ADS Google scholar
[82]
H. Chen, Q. Niu, and A. MacDonald, Anomalous Hall effect arising from noncollinear antiferromagnetism, Phys. Rev. Lett.112(1), 017205 (2014)
CrossRef ADS Google scholar
[83]
M. T. Suzuki, T. Koretsune, M. Ochi, and R. Arita, Cluster multipole theory for anomalous Hall effect in antiferromagnets, Phys. Rev. B95(9), 094406 (2017)
CrossRef ADS Google scholar
[84]
G. Y. Guo and T. C. Wang, Large anomalous Nernst and spin Nernst effects in the noncollinear antiferromagnets Mn3X (X= Sn, Ge, Ga), Phys. Rev. B96(22), 224415 (2017)
CrossRef ADS Google scholar
[85]
L. Landau, E. Lifshitz, and L. Pitaevskii, Electrodynamics of Continuous Media, New York: Pergamon Press, 1984
CrossRef ADS Google scholar
[86]
I. Sodemann and L. Fu, Quantum nonlinear Hall effect induced by berry curvature dipole in time-reversal invariant materials, Phys. Rev. Lett.115(21), 216806 (2015)
CrossRef ADS Google scholar
[87]
S. Y. Xu, Q. Ma, H. Shen, V. Fatemi, S. Wu, T. R. Chang, G. Chang, A. M. M. Valdivia, C. K. Chan, Q. D. Gibson, J. Zhou, Z. Liu, K. Watanabe, T. Taniguchi, H. Lin, R. J. Cava, L. Fu, N. Gedik, and P. Jarillo-Herrero, Electrically switchable Berry curvature dipole in the monolayer topological insulator WTe2, Nat. Phys.14(9), 900 (2018)
CrossRef ADS Google scholar
[88]
K. Kang, T. Li, E. Sohn, J. Shan, and K. F. Mak, Observation of the nonlinear anomalous Hall effect in 2D WTe2, arXiv: 1809.08744 (2018)
[89]
Q. Ma, S.Y. Xu, H. Shen, D. Macneill, V. Fatemi, T.-R. Chang, A. M. M. Valdivia, S. Wu, Z. Du, C.-H. Hsu, S. Fang, Q. D. Gibson, K. Watanabe, T. Taniguchi, R. J. Cava, E. Kaxiras, H.-Z. Lu, H. Lin, L. Fu, N. Gedik, and P. Jarillo-Herrero, Observation of the nonlinear Hall effect under time reversal symmetric conditions, Nature565, 337 (2019)
CrossRef ADS Google scholar
[90]
A. Malashevich and I. Souza, Band theory of spatial dispersion in magnetoelectrics, Phys. Rev. B82(24), 245118 (2010)
CrossRef ADS Google scholar
[91]
J. Orenstein and J. E. Moore, Berry phase mechanism for optical gyro ropy in stripe-ordered cuprates, Phys. Rev. B87(16), 165110 (2013)
CrossRef ADS Google scholar
[92]
S. Nandy and I. Sodemann, Symmetry and quantum kinetics of the non-linear Hall effect, arXiv: 1901.04467 (2019)
[93]
J. R. Reitz, and A. W. Overhauser, Magnetoresistance of potassium, Phys. Rev.171(3), 749 (1968)
CrossRef ADS Google scholar
[94]
P. A. Penz and R. Bowers, Strain-dependent magnetoresistance of potassium, Phys. Rev.172(3), 991 (1968)
CrossRef ADS Google scholar
[95]
B. K. Jones, Strain-dependent magnetoresistance of sodium and potassium, Phys. Rev.179(3), 637 (1969)
CrossRef ADS Google scholar
[96]
A. L. Friedman, J. L. Tedesco, P. M. Campbell, J. C. Culbertson, E. Aifer, F. K. Perkins, R. L. Myers-Ward, J. K. Hite, C. R. Jr Eddy, G. G. Jernigan, and D. K. Gaskill, Quantum linear magnetoresistance in multilayer epitaxial graphene, Nano Lett.10(10), 3962 (2010)
CrossRef ADS Google scholar
[97]
D. X. Qu, Y. S. Hor, J. Xiong, R. J. Cava, and N. P. Ong, Quantum oscillations and Hall anomaly of surface states in the topological insulator Bi2Te3, Science329(5993), 821 (2010)
CrossRef ADS Google scholar
[98]
H. Tang, D. Liang, R. L. J. Qiu, and X. P. A. Gao, Twodimensional transport-induced linear magneto-resistance in topological insulator Bi2Se3 nanoribbons, ACS Nano5(9), 7510 (2011)
CrossRef ADS Google scholar
[99]
X. Wang, Y. Du, S. Dou, and C. Zhang, Room temperature giant and linear magnetoresistance in topological insulator Bi2Te3 nanosheets, Phys. Rev. Lett.108(26), 266806 (2012)
CrossRef ADS Google scholar
[100]
J. Tian, C. Chang, H. Cao, K. He, X. Ma, Q. Xue, and Y. P. Chen, Quantum and classical magnetoresistance in ambipolar topological insulator transistors with gatetunable bulk and surface conduction, Sci. Rep.4(1), 4859 (2015)
CrossRef ADS Google scholar
[101]
L. He, X. Hong, J. Dong, J. Pan, Z. Zhang, J. Zhang, and S. Li, Quantum transport evidence for the threedimensional Dirac semimetal phase in Cd3As2, Phys. Rev. Lett.113(24), 246402 (2014)
CrossRef ADS Google scholar
[102]
T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2, Nat. Mater.14(3), 280 (2015)
CrossRef ADS Google scholar
[103]
J. Feng, Y. Pang, D. Wu, Z. Wang, H. Weng, J. Li, X. Dai, Z. Fang, Y. Shi, and L. Lu, Large linear magnetoresistance in Dirac semimetal Cd3As2with Fermi surfaces close to the Dirac points, Phys. Rev. B92(8), 081306 (2015)
CrossRef ADS Google scholar
[104]
M. Novak, S. Sasaki, K. Segawa, and Y. Ando, Large linear magnetoresistance in the Dirac semimetal TlBiSSe, Phys. Rev. B91(4), 041203 (2015)
CrossRef ADS Google scholar
[105]
A. Narayanan, M. Watson, S. Blake, N. Bruyant, L. Drigo, Y. Chen, D. Prabhakaran, B. Yan, C. Felser, T. Kong, P. Canfield, and A. Coldea, Linear magnetoresistance caused by mobility fluctuations in n-doped Cd3As2, Phys. Rev. Lett.114(11), 117201 (2015)
CrossRef ADS Google scholar
[106]
X. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang, H. Liang, M. Xue, H. Weng, Z. Fang, X. Dai, and G. Chen, Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs, Phys. Rev. X5(3), 031023 (2015)
CrossRef ADS Google scholar
[107]
A. A. Abrikosov, Quantum magnetoresistance, Phys. Rev. B58(5), 2788 (1998)
CrossRef ADS Google scholar
[108]
A. A. Abrikosov, Quantum linear magnetoresistance, Europhys. Lett.49(6), 789 (2000)
CrossRef ADS Google scholar
[109]
C. M. Wang and X. L. Lei, Linear magnetoresistance on the topological surface, Phys. Rev. B86(3), 035442 (2012)
CrossRef ADS Google scholar
[110]
C. Herring, Effect of random inhomogeneities on electrical and galvanomagnetic measurements, J. Appl. Phys.31(11), 1939 (1960)
CrossRef ADS Google scholar
[111]
M. M. Parish and P. B. Littlewood, Non-saturating magnetoresistance in heavily disordered semiconductors, Nature426(6963), 162 (2003)
CrossRef ADS Google scholar
[112]
N. A. Porter and C. H. Marrows, Linear magnetoresistance in n-type silicon due to doping density fluctuations, Sci. Rep.2(1), 565 (2012)
CrossRef ADS Google scholar
[113]
N. Kozlova, N. Mori, O. Makarovsky, L. Eaves, Q. Zhuang, A. Krier, and A. Patanè, Linear magnetoresistance due to multiple-electron scattering by low-mobility islands in an inhomogeneous conductor, Nat. Commun.3(1), 1097 (2012)
CrossRef ADS Google scholar
[114]
H. Chen, Y. Gao, D. Xiao, A. H. MacDonald, and Q. Niu, Semiclassical theory of linear magnetoresistance in crystalline conductors with broken time-reversal symmetry, arXiv: 1511.02557 (2015)
[115]
A. B. Pippard, Magnetoresistance in Metals, Cambridge University Press, Cambridge, England, New York, 1989
[116]
H. B. Nielsen and M. Ninomiya, The Adler–Bell–Jackiw anomaly and Weyl fermions in a crystal, Phys. Lett. B130(6), 389 (1983)
CrossRef ADS Google scholar
[117]
V. Aji, Adler–Bell–Jackiw anomaly in Weyl semimetals: Application to pyrochlore iridates, Phys. Rev. B85(24), 241101 (2012)
CrossRef ADS Google scholar
[118]
A. A. Burkov, Chiral anomaly and transport in Weyl metals, J. Phys.: Condens. Matter27(11), 113201 (2015)
CrossRef ADS Google scholar
[119]
M. A. Stephanov, and Y. Yin, Chiral kinetic theory, Phys. Rev. Lett.109(16), 162001 (2012)
CrossRef ADS Google scholar
[120]
D. T. Son and N. Yamamoto, Kinetic theory with Berry curvature from quantum field theories, Phys. Rev. D87(8), 085016 (2013)
CrossRef ADS Google scholar
[121]
B. Z. Spivak and A. V. Andreev, Magnetotransport phenomena related to the chiral anomaly in Weyl semimetals, Phys. Rev. B93(8), 085107 (2016)
CrossRef ADS Google scholar
[122]
Y. Hidaka, S. Pu, and D. L. Yang, Relativistic chiral kinetic theory from quantum field theories, Phys. Rev. D95(9), 091901 (2017)
CrossRef ADS Google scholar
[123]
A. Sekine, D. Culcer, and A. H. MacDonald, Quantum kinetic theory of the chiral anomaly, Phys. Rev. B96(23), 235134 (2017)
CrossRef ADS Google scholar
[124]
A. A. Burkov, Chiral anomaly and diffusive magnetotransport in Weyl metals, Phys. Rev. Lett.113(24), 247203 (2014)
CrossRef ADS Google scholar
[125]
A. A. Burkov, Negative longitudinal magnetoresistance in Dirac and Weyl metals, Phys. Rev. B91(24), 245157 (2015)
CrossRef ADS Google scholar
[126]
A. Andreev and B. Spivak, Longitudinal negative magnetoresistance and magnetotransport phenomena in conventional and topological conductors, Phys. Rev. Lett.120(2), 026601 (2018)
CrossRef ADS Google scholar
[127]
C. Shekhar, A. K. Nayak, Y. Sun, M. Schmidt, M. Nicklas, I. Leermakers, U. Zeitler, Y. Skourski, J. Wosnitza, Z. Liu, Y. Chen, W. Schnelle, H. Borrmann, Y. Grin, C. Felser, and B. Yan, Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP, Nat. Phys.11(8), 645 (2015)
CrossRef ADS Google scholar
[128]
X. Yang, Y. Li, Z. Wang, Y. Zheng, and Z. A. Xu, Chiral anomaly induced negative magnetoresistance in topological Weyl semimetal NbAs, arXiv: 1506.03190 (2015)
[129]
Z. Wang, Y. Zheng, Z. Shen, Y. Lu, H. Fang, F. Sheng, Y. Zhou, X. Yang, Y. Li, C. Feng, and Z. A. Xu, Helicityprotected ultrahigh mobility Weyl fermions in NbP, Phys. Rev. B93(12), 121112 (2016)
CrossRef ADS Google scholar
[130]
C. L. Zhang, S. Y. Xu, I. Belopolski, Z. Yuan, Z. Lin, B. Tong, G. Bian, N. Alidoust, C. C. Lee, S. M. Huang, T. R. Chang, G. Chang, C. H. Hsu, H. T. Jeng, M. Neupane, D. S. Sanchez, H. Zheng, J. Wang, H. Lin, C. Zhang, H. Z. Lu, S. Q. Shen, T. Neupert, M. Z. Hasan, and S. Jia, Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal, Nat. Commun.7(1), 10735 (2016)
CrossRef ADS Google scholar
[131]
H. J. Kim, K. S. Kim, J. F. Wang, M. Sasaki, N. Satoh, A. Ohnishi, M. Kitaura, M. Yang, and L. Li, Dirac versus Weyl fermions in topological insulators: Adler-Bell-Jackiw anomaly in transport phenomena, Phys. Rev. Lett.111(24), 246603 (2013)
CrossRef ADS Google scholar
[132]
J. Xiong, S. K. Kushwaha, T. Liang, J. W. Krizan, M. Hirschberger, W. Wang, R. Cava, and N. Ong, Evidence for the chiral anomaly in the Dirac semimetal Na3Bi, Science350(6259), 413 (2015)
CrossRef ADS Google scholar
[133]
J. Feng, Y. Pang, D. Wu, Z. Wang, H. Weng, J. Li, X. Dai, Z. Fang, Y. Shi, and L. Lu, Large linear magnetoresistance in Dirac semimetal Cd3As2 with Fermi surfaces close to the Dirac points, Phys. Rev. B92(8), 081306 (2015)
CrossRef ADS Google scholar
[134]
C. Z. Li, L. X. Wang, H. Liu, J. Wang, Z. M. Liao, and D. P. Yu, Giant negative magnetoresistance induced by the chiral anomaly in individual Cd3As2 nanowires, Nat. Commun.6(1), 10137 (2015)
CrossRef ADS Google scholar
[135]
H. Li, H. He, H. Z. Lu, H. Zhang, H. Liu, R. Ma, Z. Fan, S. Q. Shen, and J. Wang, Negative magnetoresistance in Dirac semimetal Cd3As2, Nat. Commun.7(1), 10301 (2016)
CrossRef ADS Google scholar
[136]
C. Zhang, E. Zhang, W. Wang, Y. Liu, Z. G. Chen, S. Lu, S. Liang, J. Cao, X. Yuan, L. Tang, Q. Li, C. Zhou, T. Gu, Y. Wu, J. Zou, and F. Xiu, Room-temperature chiral charge pumping in Dirac semimetals, Nat. Commun.8, 13741 (2017)
CrossRef ADS Google scholar
[137]
Y. Gao, S. A. Yang, and Q. Niu, Intrinsic relative magnetoconductivity of nonmagnetic metals, Phys. Rev. B95(16), 165135 (2017)
CrossRef ADS Google scholar
[138]
X. Dai, Z. Du, and H. Z. Lu, Negative magnetoresistance without chiral anomaly in topological insulators, Phys. Rev. Lett.119(16), 166601 (2017)
CrossRef ADS Google scholar
[139]
H. W. Wang, B. Fu, and S. Q. Shen, Intrinsic magnetoresistance in three-dimensional Dirac materials with low carrier density, Phys. Rev. B98(8), 081202 (2018)
CrossRef ADS Google scholar
[140]
K. Yoshida, Transport of spatially inhomogeneous current in a compensated metal under magnetic fields (III): A case of bismuth in longitudinal and transverse magnetic fields, J. Appl. Phys.51(8), 4226 (1980)
CrossRef ADS Google scholar
[141]
R. D. Reis, M. O. Ajeesh, N. Kumar, F. Arnold, C. Shekhar, M. Naumann, M. Schmidt, M. Nicklas, and E. Hassinger, On the search for the chiral anomaly in Weyl semimetals: The negative longitudinal magnetoresistance., New J. Phys.18(8), 085006 (2016)
CrossRef ADS Google scholar
[142]
Z. Yuan, H. Lu, Y. Liu, J. Wang, and S. Jia, Large magnetoresistance in compensated semimetals TaAs2 and NbAs2, Phys. Rev. B93(18), 184405 (2016)
CrossRef ADS Google scholar
[143]
R. Shindou and L. Balents, Artificial electric field in Fermi liquids, Phys. Rev. Lett.97(21), 216601 (2006)
CrossRef ADS Google scholar
[144]
R. Shindou and L. Balents, Gradient expansion approach to multiple-band Fermi liquids, Phys. Rev. B77(3), 035110 (2008)
CrossRef ADS Google scholar
[145]
D. Culcer, A. Sekine, and A. H. MacDonald, Interband coherence response to electric fields in crystals: Berryphase contributions and disorder effects, Phys. Rev. B96(3), 035106 (2017)
CrossRef ADS Google scholar
[146]
Y. Tian, L. Ye, and X. Jin, Proper scaling of the anomalous Hall effect, Phys. Rev. Lett.103(8), 087206 (2009)
CrossRef ADS Google scholar
[147]
S. H. Chun, Y. S. Kim, H. K. Choi, I. T. Jeong, W. O. Lee, K. S. Suh, Y. S. Oh, K. H. Kim, Z. G. Khim, J. C. Woo, and Y. D. Park, Interplay between carrier and impurity concentrations in annealed Ga1-xMnxAs: Intrinsic anomalous Hall effect, Phys. Rev. Lett.98(2), 026601 (2007)
CrossRef ADS Google scholar
[148]
W. L. Lee, S. Watauchi, V. L. Miller, R. J. Cava, and N. P. Ong, Dissipationless Anomalous Hall Current in the Ferromagnetic Spinel CuCr2Se4-xBrx, Science303(5664), 1647 (2004)
CrossRef ADS Google scholar
[149]
R. Mathieu, A. Asamitsu, H. Yamada, K. S. Takahashi, M. Kawasaki, Z. Fang, N. Nagaosa, and Y. Tokura, Scaling of the anomalous Hall effect in Sr1-xCaxRuO3, Phys. Rev. Lett.93(1), 016602 (2004)
CrossRef ADS Google scholar
[150]
B. C. Sales, R. Jin, D. Mandrus, and P. Khalifah, Anomalous Hall effect in three ferromagnetic compounds: EuFe4Sb12, Yb14MnSb11, and Eu8Ga16Ge30, Phys. Rev. B73(22), 224435 (2006)
CrossRef ADS Google scholar
[151]
C. Zeng, Y. Yao, Q. Niu, and H. H. Weitering, Linear magnetization dependence of the intrinsic anomalous Hall effect, Phys. Rev. Lett.96(3), 037204 (2006)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1755 KB)

Accesses

Citations

Detail

Sections
Recommended

/