Emergence of magnetic order in kagomé antiferromagnets

D. J. J. Farnell

PDF(1283 KB)
PDF(1283 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (2) : 23302. DOI: 10.1007/s11467-019-0886-3
VIEW & PERSPECTIVE
VIEW & PERSPECTIVE

Emergence of magnetic order in kagomé antiferromagnets

Author information +
History +

Cite this article

Download citation ▾
D. J. J. Farnell. Emergence of magnetic order in kagomé antiferromagnets. Front. Phys., 2019, 14(2): 23302 https://doi.org/10.1007/s11467-019-0886-3

References

[1]
L. Balents, Spin liquids in frustrated magnets, Nature 464(7286), 199 (2010)
CrossRef ADS Google scholar
[2]
L. Balents, M. P. Fisher, and S. M. Girvin, Fractionalization in an easy-axis kagomé antiferromagnet, Phys. Rev. B 65(22), 224412 (2002)
CrossRef ADS Google scholar
[3]
T. H. Han, J. S. Helton, S. Chu, D. G. Nocera, J. A. Rodriguez-Rivera, C. Broholm, and Y. S. Lee, Fractionalized excitations in the spin-liquid state of a kagomé- lattice antiferromagnet, Nature 492, 406 (2012)
CrossRef ADS Google scholar
[4]
J. Richter, J. Schulenburg, and A. Honecker, Quantum magnetism in two dimensions: From semi-classical Néel order to magnetic disorder, Lect. Notes Phys. 645, pp 85–153, Heidelberg Berlin: Springer, 2004
CrossRef ADS Google scholar
[5]
D. J. J. Farnell, O. Götze, J. Richter, R. F. Bishop, and P. H. Y. Li, Quantum s= 1/2 antiferromagnets on Archimedean lattices: The route from semiclassical magnetic order to nonmagnetic quantum states, Phys. Rev. B 89(18), 184407 (2014)
CrossRef ADS Google scholar
[6]
J. T. Chalker, P. C. W. Holdsworth, and E. F. Shender, Hidden order in a frustrated system: Properties of the Heisenberg kagomé antiferromagnet, Phys. Rev. Lett. 68(6), 855 (1992)
CrossRef ADS Google scholar
[7]
J. T. Chalker and J. F. G. Eastmond, Ground-state disorder in the spin-1/2 kagomé Heisenberg antiferromagnet, Phys. Rev. B 46(21), 14201 (1992)
CrossRef ADS Google scholar
[8]
I. Ritchey, P. Chandra, and P. Coleman, Spin folding in the two-dimensional Heisenberg kagomé antiferromagnet, Phys. Rev. B 47(22), 15342 (1993)
CrossRef ADS Google scholar
[9]
D. A. Huse and A. D. Rutenberg, Classical antiferromagnets on the kagomé lattice, Phys. Rev. B 45(13), 7536 (1992)
CrossRef ADS Google scholar
[10]
P. Müller, A. Zander, and J. Richter, Thermodynamics of the kagomé-lattice Heisenberg antiferromagnet with arbitrary spin S, Phys. Rev. B 98(2), 024414 (2018)
CrossRef ADS Google scholar
[11]
A. Chubukov, Order from disorder in a kagomé antiferromagnet, Phys. Rev. Lett. 69(5), 832 (1992)
CrossRef ADS Google scholar
[12]
S. Sachdev, Kagomé- and triangular-lattice Heisenberg antiferromagnets: Ordering from quantum fluctuations and quantum-disordered ground states with unconfined bosonic spinons, Phys. Rev. B 45(21), 12377 (1992)
CrossRef ADS Google scholar
[13]
C. L. Henley, Long-range order in the classical kagomé antiferromagnet: Effective Hamiltonian approach, Phys. Rev. B 80, 180401 (2009)
CrossRef ADS Google scholar
[14]
S. Depenbrock, I. P. McCulloch, and U. Schollwöck, Nature of the spin-liquid ground state of the S= 1/2 Heisenberg model on the kagomé lattice, Phys. Rev. Lett. 109(6), 067201 (2012)
CrossRef ADS Google scholar
[15]
S. Yan, D. A. Huse, and S. R. White, Spin-liquid ground state of the S= 1/2 kagomé Heisenberg antiferromagnet, Science 332(6034), 1173 (2011)
CrossRef ADS Google scholar
[16]
H. C. Jiang, Z. Y. Weng, and D. N. Sheng, Density matrix renormalization group numerical study of the kagomé antiferromagnet, Phys. Rev. Lett. 101(11), 117203 (2008)
CrossRef ADS Google scholar
[17]
G. Evenbly and G. Vidal, Frustrated antiferromagnets with entanglement renormalization: Ground state of the spin-1/2 Heisenberg model on a kagomé lattice, Phys. Rev. Lett. 104(18), 187203 (2010)
CrossRef ADS Google scholar
[18]
R. R. P. Singh and D. A. Huse, Ground state of the spin- 1/2 kagomé-lattice Heisenberg antiferromagnet, Phys. Rev. B 76(18), 180407 (2007)
CrossRef ADS Google scholar
[19]
O. Götze, D. J. J. Farnell, R. F. Bishop, P. H. Y. Li, and J. Richter, Heisenberg antiferromagnet on the kagomé lattice with arbitrary spin: A higher-order coupled cluster treatment, Phys. Rev. B 84(22), 224428 (2011)
CrossRef ADS Google scholar
[20]
H. J. Liao, Z. Y. Xie, J. Chen, Z. Y. Liu, H. D. Xie, R. Z. Huang, B. Normand, and T. Xiang, Gapless spin-liquid ground state in the S= 1/2 kagomé antiferromagnet, Phys. Rev. Lett. 118(13), 137202 (2017)
CrossRef ADS Google scholar
[21]
A. M. Läuchli, J. Sudan, and E. S. Sorensen, Groundstate energy and spin gap of spin-1/2 kagomé-Heisenberg antiferromagnetic clusters: Large-scale exact diagonalization results, Phys. Rev. B 83(21), 212401 (2011)
CrossRef ADS Google scholar
[22]
H. Nakano and T. Sakai, Numerical-diagonalization study of spin gap issue of the kagomé lattice Heisenberg antiferromagnet, J. Phys. Soc. Jpn. 80(5), 053704 (2011)
CrossRef ADS Google scholar
[23]
P. W. Leung and V. Elser, Numerical studies of a 36-site kagomé antiferromagnet, Phys. Rev. B 47(9), 5459 (1993)
CrossRef ADS Google scholar
[24]
A. M. Läuchli, J. Sudan, and R. Moessner, The S= 1/2 kagomé Heisenberg antiferromagnet revisited, arXiv: 1611.06990 (2016)
[25]
F. Mila, Low-energy sector of the S= 1/2 kagomé antiferromagnet, Phys. Rev. Lett. 81(11), 2356 (1998)
CrossRef ADS Google scholar
[26]
L. Messio, B. Bernu, and C. Lhuillier, Kagomé antiferromagnet: A chiral topological spin liquid? Phys. Rev. Lett. 108(20), 207204 (2012)
CrossRef ADS Google scholar
[27]
M. Fu, T. Imai, T. H. Han, and Y. S. Lee, Evidence for a gapped spin-liquid ground state in a kagomé Heisenberg antiferromagnet, Science 350(6261), 655 (2015)
CrossRef ADS Google scholar
[28]
Y. Iqbal, F. Becca, S. Sorella, and D. Poilblanc, Gapless spin-liquid phase in the kagomé spin-1/2 Heisenberg antiferromagnet, Phys. Rev. B 87, 060405(R) (2013)
[29]
M. Hermele, Y. Ran, P. A. Lee, and X. G. Wen, Properties of an algebraic spin liquid on the kagomé lattice, Phys. Rev. B 77(22), 224413 (2008)
CrossRef ADS Google scholar
[30]
J. B. Marston and C. Zeng, Spin-Peierls and spin-liquid phases of kagomé quantum antiferromagnets, J. Appl. Phys. 69(8), 5962 (1991)
CrossRef ADS Google scholar
[31]
P. Nikolic and T. Senthil, Physics of low-energy singlet states of the kagomé lattice quantum Heisenberg antiferromagnet, Phys. Rev. B 68(21), 214415 (2003)
CrossRef ADS Google scholar
[32]
D. Schwandt, M. Mambrini, and D. Poilblanc, Generalized hard-core dimer model approach to low-energy Heisenberg frustrated antiferromagnets: General properties and application to the kagomé antiferromagnet, Phys. Rev. B 81(21), 214413 (2010)
CrossRef ADS Google scholar
[33]
D. Poilblanc, M. Mambrini, and D. Schwandt, Effective quantum dimer model for the kagomé Heisenberg antiferromagnet: Nearby quantum critical point and hidden degeneracy, Phys. Rev. B 81(18), 180402 (2010)
CrossRef ADS Google scholar
[34]
J. Oitmaa and R. R. P. Singh, Competing orders in spin- 1 and spin-3/2 XXZkagomé antiferromagnets: A series expansion study, Phys. Rev. B 93(1), 014424 (2016)
CrossRef ADS Google scholar
[35]
D. J. J. Farnell, O. Götze, J. Richter, R. Zinke, R. F. Bishop, and P. H. Y. Li, The interplay between lattice topology, frustration, and spin quantum number in quantum antiferromagnets on Archimedean Lattices, Phys. Rev. B 98(22), 224402 (2018)
CrossRef ADS Google scholar
[36]
T. Liu, W. Li, A. Weichselbaum, J. von Delft, and G. Su, Simplex valence-bond crystal in the spin-1 kagomé Heisenberg antiferromagnet. Phys. Rev. B 91, 060403(R) (2015)
[37]
H. Changlani and A. M. Läuchli. Trimerized ground state of the spin-1 Heisenberg antiferromagnet on the kagomé lattice, Phys. Rev. B 91, 100407(R) (2015)
[38]
S. Nishimoto and M. Nakamura, Non-symmetry-breaking ground state of the S= 1 Heisenberg model on the kagomé lattice, Phys. Rev. B 92, 140412(R) (2015)
[39]
T. Liu, W. Li, and G. Su, Spin-ordered ground state and thermodynamic behaviors of the spin-3/2 kagomé Heisenberg antiferromagnet, Phys. Rev. E 94(3), 032114 (2016)
CrossRef ADS Google scholar
[40]
O. Cépas and A. Ralko, Resonating color state and emergent chromodynamics in the kagomé antiferromagnet, Phys. Rev. B 84(2), 020413 (2011)
CrossRef ADS Google scholar
[41]
A. L. Chernyshev and M. E. Zhitomirsky, Quantum selection of order in an XXZantiferromagnet on a kagomé lattice, Phys. Rev. Lett. 113(23), 237202 (2014)
CrossRef ADS Google scholar
[42]
O. Götze and J. Richter, Ground-state phase diagram of the XXZ spin-skagomé antiferromagnet: A coupledcluster study, Phys. Rev. B 91(10), 104402 (2015)
CrossRef ADS Google scholar
[43]
C. Xu and J. E. Moore, Geometric criticality for transitions between plaquette phases in integer-spin kagomé XXZantiferromagnets, Phys. Rev. B 72(6), 064455 (2005)
CrossRef ADS Google scholar
[44]
Y. C. He and Y. Chen, Distinct spin liquids and their transitions in spin-1/2 XXZkagomé antiferromagnets, Phys. Rev. Lett. 114(3), 037201 (2015)
CrossRef ADS Google scholar
[45]
W. J. Hu, S. S. Gong, F. Becca, and D. N. Sheng, Variational Monte Carlo study of a gapless spin liquid in the spin-1/2 XXZantiferromagnetic model on the kagomé lattice, Phys. Rev. B 92(20), 201105 (2015)
CrossRef ADS Google scholar
[46]
D. Schmalfuβ, J. Richter, and D. Ihle, Absence of longrange order in a spin-half Heisenberg antiferromagnet on the stacked kagomé lattice, Phys. Rev. B 70(18), 184412 (2004)
CrossRef ADS Google scholar
[47]
D. Guterding, R. Valentí, and H. O. Jeschke, Reduction of magnetic interlayer coupling in barlowite through isoelectronic substitution, Phys. Rev. B 94(12), 125136 (2016)
CrossRef ADS Google scholar
[48]
O. Götze and J. Richter, The route to magnetic order in the spin-1/2 kagomé Heisenberg antiferromagnet: The role of interlayer coupling, Europhys. Lett. 114(6), 67004 (2016)
CrossRef ADS Google scholar
[49]
T. Tay and O. I. Motrunich, Variational study of J1–J2 Heisenberg model on kagomé lattice using projected Schwinger-boson wave functions, Phys. Rev. B 84, 020404(R) (2011)
[50]
R. Suttner, C. Platt, J. Reuther, and R. Thomale, Renormalization group analysis of competing quantum phases in the J1–J2 Heisenberg model on the kagomé lattice, Phys. Rev. B 89(2), 020408 (2014)
CrossRef ADS Google scholar
[51]
F. Kolley, S. Depenbrock, I. P. McCulloch, U. Schollwöck, and V. Alba, Phase diagram of the J1–J2 Heisenberg model on the kagomé lattice, Phys. Rev. B 91(10), 104418 (2015)
CrossRef ADS Google scholar
[52]
J. Richter and O. Götze, unpublished
[53]
A. B. Harris, C. Kallin, and A. J. Berlinsky, Possible Néel orderings of the Kagomé antiferromagnet, Phys. Rev. B 45(6), 2899 (1992)
CrossRef ADS Google scholar
[54]
B. Bernu, C. Lhuillier, E. Kermarrec, F. Bert, P. Mendels, R. H. Colman, and A. S. Wills, Exchange energies of kapellasite from high-temperature series analysis of the kagomé lattice J1–J2–JdHeisenberg model, Phys. Rev. B 87(15), 155107 (2013)
CrossRef ADS Google scholar
[55]
Y. Iqbal, H. O. Jeschke, J. Reuther, R. Valenti, I. I. Mazin, M. Greiter, and R. Thomale, Paramagnetism in the kagomé compounds (Zn,Mg,Cd)Cu3(OH)6Cl2, Phys. Rev. B 92(22), 220404 (2015)
CrossRef ADS Google scholar
[56]
S. Bieri, L. Messio, B. Bernu, and C. Lhuillier, Gapless chiral spin liquid in a kagomé Heisenberg model, Phys. Rev. B 92(6), 060407 (2015)
CrossRef ADS Google scholar
[57]
A. Wietek, A. Sterdyniak, and A. M. Läuchli, Nature of chiral spin liquids on the kagomé lattice, Phys. Rev. B 92(12), 125122 (2015)
CrossRef ADS Google scholar
[58]
Z. Hiroi, H. Yoshida, Y. Okamoto, and M. Takigawa, Spin-1/2 kagomé compounds: Volborthite vs. herbertsmithite, J. Phys. Conf. Ser. 145(1), 012002 (2009)
CrossRef ADS Google scholar
[59]
O. Janson, J. Richter, and H. Rosner, Modified kagomé physics in the natural spin-1/2 kagomé lattice systems: Kapellasite Cu3Zn(OH)6Cl2 and haydeeite Cu3Mg(OH)6Cl2, Phys. Rev. Lett. 101(10), 106403 (2008)
CrossRef ADS Google scholar
[60]
Y. Okamoto, H. Yoshida, and Z. Hiroi, Vesignieite BaCu3V2OV8(OH)2 as a candidate spin-1/2 kagomé antiferromagnet, J. Phys. Soc. Jpn. 78(3), 033701 (2009)
CrossRef ADS Google scholar
[61]
B. Fåk, E. Kermarrec, L. Messio, B. Bernu, C. Lhuillier, F. Bert, P. Mendels, B. Koteswararao, F. Bouquet, J. Ollivier, A. D. Hillier, A. Amato, R. H. Colman, and A. S. Wills, Kapellasite: A kagomé quantum spin liquid with competing interactions, Phys. Rev. Lett. 109(3), 037208 (2012)
CrossRef ADS Google scholar
[62]
O. Janson, J. Richter, P. Sindzingre, and H. Rosner, Coupled frustrated quantum spin-1/2 chains with orbital order in volborthite Cu3V2O7(OH)2··2H2O, Phys. Rev. B 82(10), 104434 (2010)
CrossRef ADS Google scholar
[63]
I. Rousochatzakis, J. Richter, R. Zinke, and A. A. Tsirlin, Frustration and Dzyaloshinsky-Moriya anisotropy in the kagomé francisites Cu3Bi(SeO3)2O2X (X= Br, Cl), Phys. Rev. B 91(2), 024416 (2015)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1283 KB)

Accesses

Citations

Detail

Sections
Recommended

/