Large magnetocaloric effect in van der Waals crystal CrBr3

Xiaoyun Yu, Xiao Zhang, Qi Shi, Shangjie Tian, Hechang Lei, Kun Xu, Hideo Hosono

PDF(2503 KB)
PDF(2503 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (4) : 43501. DOI: 10.1007/s11467-019-0883-6
LETTER
LETTER

Large magnetocaloric effect in van der Waals crystal CrBr3

Author information +
History +

Abstract

We study the magnetocaloric effect (MCE) in van der Waals (vdW) crystal CrBr3. Bulk CrBr3 exhibits a second-order paramagnetic-ferromagnetic phase transition with TC = 33 K. The maximum magnetic entropy change −ΔSM near TC is about 7.2 J·kg−1·K−1 with the maximum adiabatic temperature change ΔTmaxad = 2.37 K and the relative cooling power RCP= 191.5 J·kg−1 at μ0H = 5 T, all of which are remarkably larger than those in CrI3. These results suggest that the vdW crystal CrBr3 is a promising candidate for the low-dimensional magnetic refrigeration in low temperature region.

Keywords

magnetocaloric effect / 2D magnetic materials

Cite this article

Download citation ▾
Xiaoyun Yu, Xiao Zhang, Qi Shi, Shangjie Tian, Hechang Lei, Kun Xu, Hideo Hosono. Large magnetocaloric effect in van der Waals crystal CrBr3. Front. Phys., 2019, 14(4): 43501 https://doi.org/10.1007/s11467-019-0883-6

References

[1]
K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, 2D materials and van der Waals heterostructures, Science 353(6298), 461 (2016)
CrossRef ADS Google scholar
[2]
K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)
CrossRef ADS Google scholar
[3]
B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature 546(7657), 270 (2017)
CrossRef ADS Google scholar
[4]
M. A. McGuire, G. Clark, S. Kc, W. M. Chance, G. E. Jellison, V. R. Cooper, X. Xu, and B. C. Sales, Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl3 crystals, Phys. Rev. Mater. 1(1), 014001 (2017)
CrossRef ADS Google scholar
[5]
M. A. McGuire, H. Dixit, V. R. Cooper, and B. C. Sales, Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3, Chem. Mater. 27(2), 612 (2015)
CrossRef ADS Google scholar
[6]
I. Tsubokawa, On the magnetic properties of a CrBr3 single crystal, J. Phys. Soc. Jpn. 15(9), 1664 (1960)
CrossRef ADS Google scholar
[7]
V. Y. Verchenko, A. A. Tsirlin, A. V. Sobolev, I. A. Presniakov, and A. V. Shevelkov, Ferromagnetic order, strong magnetocrystalline anisotropy, and magnetocaloric effect in the layered telluride Fe3−dGeTe2, Inorg. Chem. 54(17), 8598 (2015)
CrossRef ADS Google scholar
[8]
Y. Liu and C. Petrovic, Anisotropic magnetocaloric effect in single crystals of CrI3, Phys. Rev. B 97(17), 174418 (2018)
CrossRef ADS Google scholar
[9]
S. K. Banerjee, On a generalised approach to first and second order magnetic transitions, Phys. Lett. 12(1), 16 (1964)
CrossRef ADS Google scholar
[10]
X. Zhang, S. Matsuishi, and H. Hosono, Critical behavior and magnetocaloric effect in layered structure Tb2C, J. Phys. D 49(33), 335002 (2016)
CrossRef ADS Google scholar
[11]
V. K. Pecharsky and K. A. Jr Gschneidner, Magnetocaloric effect from indirect measurements: Magnetization and heat capacity, J. Appl. Phys. 86(1), 565 (1999)
CrossRef ADS Google scholar
[12]
K. A. Jr Gschneidner and V. K. Pecharsky, Magnetocaloric materials, Annu. Rev. Mater. Sci. 30(1), 387 (2000)
CrossRef ADS Google scholar
[13]
V. Franco, J. S. Blázquez, and A. Conde, Field dependence of the magnetocaloric effect in materials with a second order phase transition: A master curve for the magnetic entropy change, Appl. Phys. Lett. 89(22), 222512 (2006)
CrossRef ADS Google scholar
[14]
V. Franco and A. Conde, Scaling laws for the magnetocaloric effect in second order phase transitions: From physics to applications for the characterization of materials, Int. J. Refrig. 33(3), 465 (2010)
CrossRef ADS Google scholar
[15]
H. Oesterreicher and F. T. Parker, Magnetic cooling near Curie temperatures above 300 K, J. Appl. Phys. 55(12), 4334 (1984)
CrossRef ADS Google scholar
[16]
K. A. Jr Gschneidner, V. K. Pecharsky, and A. O. Tsokol, Recent developments in magnetocaloric materials, Rep. Prog. Phys. 68(6), 1479 (2005)
CrossRef ADS Google scholar
[17]
B. G. Shen, J. R. Sun, F. X. Hu, H. W. Zhang, and Z. H. Cheng, Recent progress in exploring magnetocaloric materials, Adv. Mater. 21(45), 4545 (2009)
CrossRef ADS Google scholar
[18]
B. Huang, G. Clark, D. R. Klein, D. MacNeill, E. Navarro-Moratalla, K. L. Seyler, and N. Wilson, M. A. M-cGuire, D. H. Cobden, D. Xiao, W. Yao, P. Jarillo-Herrero, and X. Xu, Electrical control of 2D magnetism in bilayer CrI3, Nat. Nanotech. 13, 544 (2018)
CrossRef ADS Google scholar
[19]
S. Jiang, L. Li, Z. Wang, K. F. Mak, and J. Shan, Controlling magnetism in 2D CrI3 by electrostatic doping, Nat. Nanotech. 13(7), 549 (2018)
CrossRef ADS Google scholar
[20]
Y. Deng, Y. Yu, Y. Song, J. Zhang, N. Z. Wang, Y. Z. Wu, J. Zhu, J. Wang, X. H. Chen, and Y. Zhang, Gate-tunable room-temperature ferromagnetism in twodimensional Fe3GeTe2, arXiv: 1803.02038 (2018)

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(2503 KB)

Accesses

Citations

Detail

Sections
Recommended

/