Anomalous spatial shifts in interface electronic scattering

Zhi-Ming Yu, Ying Liu, Shengyuan A. Yang

PDF(3491 KB)
PDF(3491 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (3) : 33402. DOI: 10.1007/s11467-019-0882-7
Review article
Review article

Anomalous spatial shifts in interface electronic scattering

Author information +
History +

Abstract

The anomalous spatial shifts at interface scattering, first studied in geometric optics, recently found their counterparts in the electronic context. It was shown that both longitudinal and transverse shifts, analogous to the Goos–Hänchen and Imbert–Fedorov effects in optics, can exist when electrons are scattered at a junction interface. More interestingly, the shifts are also discovered in the process of Andreev reflection at a normal/superconductor interface. Particularly, for the case with unconventional superconductors, it was discovered that the transverse shift can arise solely from the superconducting pair potential and exhibit characteristic features depending on the pairing. Here, we briefly review the recent works in this field, with an emphasis on the physical picture and theoretical understanding.

Keywords

interface scattering / transverse shift / electron optics

Cite this article

Download citation ▾
Zhi-Ming Yu, Ying Liu, Shengyuan A. Yang. Anomalous spatial shifts in interface electronic scattering. Front. Phys., 2019, 14(3): 33402 https://doi.org/10.1007/s11467-019-0882-7

References

[1]
F. Goos and H. Hänchen, Ein neuer und fundamentaler Versuch zur Totalreflexion, Ann. Phys. 436(7–8), 333 (1947)
CrossRef ADS Google scholar
[2]
F. Fornel, Evanescent Waves from Newtonian Optics to Atomic Optics, Berlin: Springer, 2010
[3]
F. Fedorov, K teorii polnogo otrazheniya, Dokl. Akad. Nauk SSSR 105, 465 (1955)
[4]
C. Imbert, Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized light beam, Phys. Rev. D 5(4), 787 (1972)
CrossRef ADS Google scholar
[5]
M. Onoda, S. Murakami, and N. Nagaosa, Hall effect of light, Phys. Rev. Lett. 93(8), 083901 (2004)
CrossRef ADS Google scholar
[6]
M. C. Chang and Q. Niu, Berry phase, hyperorbits, and the Hofstadter spectrum, Phys. Rev. Lett. 75(7), 1348 (1995)
CrossRef ADS Google scholar
[7]
M. C. Chang and Q. Niu, Berry phase, hyperorbits, and the Hofstadter spectrum: Semiclassical dynamics in magnetic Bloch bands, Phys. Rev. B 53(11), 7010 (1996)
CrossRef ADS Google scholar
[8]
G. Sundaram and Q. Niu, Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects, Phys. Rev. B 59(23), 14915 (1999)
CrossRef ADS Google scholar
[9]
S. Murakami, N. Nagaosa, and S. C. Zhang, Dissipationless quantum spin current at room temperature, Science 301(5638), 1348 (2003)
CrossRef ADS Google scholar
[10]
J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. MacDonald, Universal intrinsic spin Hall effect, Phys. Rev. Lett. 92(12), 126603 (2004)
CrossRef ADS Google scholar
[11]
K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, Spin–orbit interactions of light, Nat. Photonics 9(12), 796 (2015)
CrossRef ADS Google scholar
[12]
O. Hosten and P. Kwiat, Observation of the spin Hall effect of light via weak measurements, Science 319(5864), 787 (2008)
CrossRef ADS Google scholar
[13]
X. Zhou, Z. Xiao, H. Luo, and S. Wen, Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements, Phys. Rev. A 85(4), 043809 (2012)
CrossRef ADS Google scholar
[14]
X. Yin , Z. Ye, J. Rho, Y. Wang, and X. Zhang, Photonic spin Hall effect at metasurfaces, Science 339(6126), 1405 (2013)
CrossRef ADS Google scholar
[15]
X. Zhou, X. Ling, H. Luo, and S. Wen, Identifying graphene layers via spin Hall effect of light, Appl. Phys. Lett. 101(25), 251602 (2012)
CrossRef ADS Google scholar
[16]
S. C. Miller and N. Ashby, Shifts of electron beam position due to total reflection at a barrier, Phys. Rev. Lett. 29(11), 740 (1972)
CrossRef ADS Google scholar
[17]
D. M. Fradkin and R. J. Kashuba, Spatial displacement of electrons due to multiple total reflections, Phys. Rev. D 9(10), 2775 (1974)
CrossRef ADS Google scholar
[18]
D. M. Fradkin and R. J. Kashuba, Position-operator method for evaluating the shift of a totally reflected electron, Phys. Rev. D 10(4), 1137 (1974)
CrossRef ADS Google scholar
[19]
N. A. Sinitsyn, Q. Niu, J. Sinova, and K. Nomura, Disorder effects in the anomalous Hall effect induced by Berry curvature, Phys. Rev. B 72(4), 045346 (2005)
CrossRef ADS Google scholar
[20]
X. Chen, C. F. Li, and Y. Ban, Tunable lateral displacement and spin beam splitter for ballistic electrons in twodimensional magnetic-electric nanostructures, Phys. Rev. B 77(7), 073307 (2008)
CrossRef ADS Google scholar
[21]
X. Chen, X. J. Lu, Y. Wang, and C. F. Li, Controllable Goos–Hänchen shifts and spin beam splitter for ballistic electrons in a parabolic quantum well under a uniform magnetic field, Phys. Rev. B 83(19), 195409 (2011)
CrossRef ADS Google scholar
[22]
C. W. J. Beenakker, R. A. Sepkhanov, A. R. Akhmerov, and J. Tworzydło, Quantum Goos–Hänchen effect in graphene, Phys. Rev. Lett. 102(14), 146804 (2009)
CrossRef ADS Google scholar
[23]
L. Zhao and S. F. Yelin, Proposal for graphene-based coherent buffers and memories, Phys. Rev. B 81(11), 115441 (2010)
CrossRef ADS Google scholar
[24]
M. Sharma and S. Ghosh, Electron transport and Goos–Hänchen shift in graphene with electric and magnetic barriers: optical analogy and band structure, J. Phys.: Condens. Matter 23(5), 055501 (2011)
CrossRef ADS Google scholar
[25]
Z. Wu, F. Zhai, F. M. Peeters, H. Q. Xu, and K. Chang, Valley-dependent brewster angles and Goos–Hänchen effect in strained graphene, Phys. Rev. Lett. 106(17), 176802 (2011)
CrossRef ADS Google scholar
[26]
X. Chen, J. W. Tao, and Y. Ban, Goos–Hänchen-like shifts for Dirac fermions in monolayer graphene barrier, Eur. Phys. J. B 79(2), 203 (2011)
CrossRef ADS Google scholar
[27]
X. Chen , P. L. Zhao, and X. J. Lu, Giant negative and positive lateral shifts in graphene superlattices, Eur. Phys. J. B 86(5), 223 (2013)
CrossRef ADS Google scholar
[28]
S. Chen , Z.Han, M. M.Elahi, K. M. M.Habib, L.Wang, B.Wen, Y. Gao, T.Taniguchi, K.Watanabe, J.Hone, A. W.Ghosh, and C. R.Dean, Electron optics with p-n junctions in ballistic graphene, Science 353(6307), 1522 (2016)
CrossRef ADS Google scholar
[29]
J.Spector, H. L. Stormer, K. W.Baldwin, L. N.Pfeiffer, and K. W.West, Electron focusing in two‐dimensional systems by means of an electrostatic lens, Appl. Phys. Lett. 56(13), 1290 (1990)
CrossRef ADS Google scholar
[30]
L. W.Molenkamp, A. A. M.Staring, C. W. J.Beenakker, R.Eppenga, C. E. Timmering, J. G. Williamson, C. J. P. M. Harmans, and C. T. Foxon, Electron-beam collimation with a quantum point contact, Phys. Rev. B 41(2), 1274 (1990)
CrossRef ADS Google scholar
[31]
D.Dragoman and M.Dragoman, Optical analogue structures to mesoscopic devices,Prog. Quantum Electron. 23(4–5), 131 (1999)
CrossRef ADS Google scholar
[32]
Q. D.Jiang, H. Jiang, H.Liu, Q. F.Sun, and X. C.Xie, Topological Imbert–Fedorov Shift in Weyl Semimetals, Phys. Rev. Lett. 115(15), 156602 (2015)
CrossRef ADS Google scholar
[33]
S. A. Yang , H.Pan, and F.Zhang, Chirality-Dependent Hall Effect in Weyl Semimetals, Phys. Rev. Lett. 115(15), 156603 (2015)
CrossRef ADS Google scholar
[34]
L. Wang and S. K.Jian, Imbert–Fedorov shift in Weyl semimetals: Dependence on monopole charge and intervalley scattering, Phys. Rev. B 96(11), 115448 (2017)
CrossRef ADS Google scholar
[35]
U.Chattopadhyay, L.K.Shi, B.Zhang, J. C. W.Song, and Y. D.Chong, Fermi arc induced vortex structure in Weyl beam shifts, arXiv: 1809.03159 (2018)
[36]
A. F.Andreev , Thermal conductivity of the intermediate state of superconductors, Sov. Phys. JETP 19, 1228 (1964)
[37]
P. G.de Gennes , Superconductivity in Metals and Alloys, New York: Benjamin, 1966
[38]
Y.Liu, Z. M.Yu, and S. A. Yang, Transverse shift in Andreev reflection, Phys. Rev. B 96(12), 121101 (2017)
CrossRef ADS Google scholar
[39]
Y.Liu, Z. M.Yu, H. Jiang, and S. A. Yang, Goos–Hänchen-like shifts at a metal/superconductor interface, Phys. Rev. B 98(7), 075151 (2018)
CrossRef ADS Google scholar
[40]
Z. M.Yu, Y. Liu, Y.Yao, and S. A. Yang, Unconventional pairing induced anomalous transverse shift in Andreev reflection, Phys. Rev. Lett. 121(17), 176602 (2018)
CrossRef ADS Google scholar
[41]
Y. Liu , Z. M.Yu, J.Liu, H.Jiang, and S. A.Yang, Transverse shift in crossed Andreev reflection, Phys. Rev. B 98(19), 195141 (2018)
CrossRef ADS Google scholar
[42]
J. M.Byers and M. E.Flatté, Probing spatial correlations with nanoscale two-contact tunneling, Phys. Rev. Lett. 74(2), 306 (1995)
CrossRef ADS Google scholar
[43]
G. Deutscher and D.Feinberg, Coupling superconductingferromagnetic point contacts by Andreev reflections, Appl. Phys. Lett. 76(4), 487 (2000)
CrossRef ADS Google scholar
[44]
X.Chen , X. J.Lu, Y.Ban, and C. F. Li, Electronic analogy of the Goos–Hänchen effect: A review, J. Opt. 15(3), 033001 (2013)
CrossRef ADS Google scholar
[45]
K. Y.Bliokh and A.Aiello, Goos–Hänchen and Imbert–Fedorov beam shifts: An overview, J. Opt. 15(1), 014001 (2013)
CrossRef ADS Google scholar
[46]
D.Xiao, M. C.Chang, and Q.Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82(3), 1959 (2010)
CrossRef ADS Google scholar
[47]
S. A.Yang, G. S. D.Beach, C. Knutson, D.Xiao, Z.Zhang, M.Tsoi, Q.Niu, A. H. MacDonald, and J. L.Erskine, Topological electromotive force from domain-wall dynamics in a ferromagnet, Phys. Rev. B 82(5), 054410 (2010)
CrossRef ADS Google scholar
[48]
Y.Gao , S. A.Yang, and Q.Niu, Field induced positional shift of Bloch electrons and its dynamical implications, Phys. Rev. Lett. 112(16), 166601 (2014)
CrossRef ADS Google scholar
[49]
Y.Gao , S. A.Yang, and Q. Niu, Geometrical effects in orbital magnetic susceptibility, Phys. Rev. B 91(21), 214405 (2015)
CrossRef ADS Google scholar
[50]
Y. Gao, S. A. Yang, and Q.Niu, Intrinsic relative magnetoconductivity of nonmagnetic metals, Phys. Rev. B 95(16), 165135 (2017)
CrossRef ADS Google scholar
[51]
D.Culcer, Y.Yao, and Q. Niu, Coherent wave-packet evolution in coupled bands, Phys. Rev. B 72(8), 085110 (2005)
CrossRef ADS Google scholar
[52]
X.Wan, A. M.Turner, A. Vishwanath, and S. Y. Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B 83(20), 205101 (2011)
CrossRef ADS Google scholar
[53]
N. P.Armitage, E. J.Mele, and A. Vishwanath, Weyl and Dirac semimetals in three-dimensional solids, Rev. Mod. Phys. 90(1), 015001 (2018)
CrossRef ADS Google scholar
[54]
S. A.Yang , Dirac and Weyl materials: Fundamental aspects and some spintronics applications, SPIN 06(02), 1640003 (2016)
CrossRef ADS Google scholar
[55]
Q. D. Jiang, H.Jiang, H.Liu, Q. F.Sun, and X. C.Xie, Chiral wave-packet scattering in Weyl semimetals, Phys. Rev. B 93(19), 195165 (2016)
CrossRef ADS Google scholar
[56]
G. E.Blonder, M.Tinkham, and T. M.Klapwijk, Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion, Phys. Rev. B 25(7), 4515 (1982)
CrossRef ADS Google scholar
[57]
M. J. M.de Jong and C. W. J.Beenakker, Andreev reflection in ferromagnet-superconductor junctions, Phys. Rev. Lett. 74(9), 1657 (1995)
CrossRef ADS Google scholar
[58]
S. Kashiwaya and Y. Tanaka, Tunnelling effects on surface bound states in unconventional superconductors, Rep. Prog. Phys. 63(10), 1641 (2000)
CrossRef ADS Google scholar
[59]
H. Plehn , U.Gunsenheimer, and R.Kümmel, Subgap peak and Tomash-McMillan-Anderson oscillations in the density of states of SNS Bridges.,J. Low Temp. Phys. 83(1–2), 71 (1991)
CrossRef ADS Google scholar
[60]
J.Hara, M. Ashida, and K.Nagai, Pair potential and density of states in proximity-contact superconducting–normal-metal double layers, Phys. Rev. B 47(17), 11263 (1993)
CrossRef ADS Google scholar
[61]
H.Plehn, O. J.Wacker, and R.Kümmel, Electronic structure of superconducting multilayers, Phys. Rev. B 49(17), 12140 (1994)
CrossRef ADS Google scholar
[62]
C. W. J.BeenakkerSpecular Andreev reflection in graphene, Phys. Rev. Lett. 97(6), 067007 (2006)
CrossRef ADS Google scholar
[63]
H.Weng , Y.Liang, Q.Xu, R.Yu, Z. Fang, X.Dai, and Y.Kawazoe, Topological node-line semimetal in threedimensional graphene networks, Phys. Rev. B 92(4), 045108 (2015)
CrossRef ADS Google scholar
[64]
Y.Chen, Y.Xie, S. A.Yang, H.Pan, F. Zhang, M. L.Cohen, and S.Zhang, Nanostructured carbon allotropes with Weyl-like loops and points, Nano Lett. 15(10), 6974 (2015)
CrossRef ADS Google scholar
[65]
M. Sigrist, A.Avella, and F.Mancini, Introduction to unconventional superconductivity, AIP Conf. Proc. 789, 165 (2005)
CrossRef ADS Google scholar
[66]
Y.Tanaka and S.Kashiwaya, Theory of tunneling spectroscopy of d-wave superconductors, Phys. Rev. Lett. 74(17), 3451 (1995)
CrossRef ADS Google scholar
[67]
C. C. Tsuei and J. R.Kirtley, Pairing symmetry in cuprate superconductors, Rev. Mod. Phys. 72(4), 969 (2000)
CrossRef ADS Google scholar
[68]
A. P. Mackenzie and Y. Maeno, The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing, Rev. Mod. Phys. 75(2), 657 (2003)
CrossRef ADS Google scholar
[69]
C.Kallin and J.Berlinsky, Chiral superconductors, Rep. Prog. Phys. 79(5), 054502 (2016)
CrossRef ADS Google scholar
[70]
D.Beckmann , H. B.Weber, and H. v.Löhneysen, Evidence for Crossed Andreev Reflection in Superconductor-Ferromagnet Hybrid Structures, Phys. Rev. Lett. 93(19), 197003 (2004)
CrossRef ADS Google scholar
[71]
S.Russo, M.Kroug, T. M. Klapwijk, and A. F. Morpurgo, Experimental observation of bias-dependent nonlocal Andreev reflection, Phys. Rev. Lett. 95(2), 027002 (2005)
CrossRef ADS Google scholar
[72]
P.Cadden-Zimansky, and V.Chandrasekhar, Nonlocal correlations in normal-metal superconducting systems, Phys. Rev. Lett. 97(23), 237003 (2006)
CrossRef ADS Google scholar
[73]
M.Veldhorst, and A.Brinkman, Nonlocal Cooper pair splitting in a pSn junction, Phys. Rev. Lett. 105(10), 107002 (2010)
CrossRef ADS Google scholar
[74]
S. Y.Lee , A.Goussev, O.Georgiou, G.Gligorić, and A.Lazarides, Sticky Goos–Hänchen effect at normal/superconductor interface, Europhys. Lett. (EPL) 103(2), 20004 (2013)
CrossRef ADS Google scholar
[75]
K. S. Novoselov , A. K. Geim, S. V.Morozov, D.Jiang, Y.Zhang, S. V.Dubonos, I. V.Grigorieva, and A. A.Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
CrossRef ADS Google scholar
[76]
A. H.Castro Neto, F.Guinea, N. M. R.Peres, K. S.Novoselov, and A. K.Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
CrossRef ADS Google scholar
[77]
A.Ohtomo and H. Hwang, A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface, Nature 427(6973), 423 (2004)
CrossRef ADS Google scholar
[78]
L. Liu, J. Park, D. A.Siegel, K. F.McCarty, K. W. Clark, W. Deng, L. Basile, J. C.Idrobo, A. P.Li, and G. Gu, Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges, Science 343(6167), 163 (2014)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(3491 KB)

Accesses

Citations

Detail

Sections
Recommended

/