Anomalous spatial shifts in interface electronic scattering
Zhi-Ming Yu, Ying Liu, Shengyuan A. Yang
Anomalous spatial shifts in interface electronic scattering
The anomalous spatial shifts at interface scattering, first studied in geometric optics, recently found their counterparts in the electronic context. It was shown that both longitudinal and transverse shifts, analogous to the Goos–Hänchen and Imbert–Fedorov effects in optics, can exist when electrons are scattered at a junction interface. More interestingly, the shifts are also discovered in the process of Andreev reflection at a normal/superconductor interface. Particularly, for the case with unconventional superconductors, it was discovered that the transverse shift can arise solely from the superconducting pair potential and exhibit characteristic features depending on the pairing. Here, we briefly review the recent works in this field, with an emphasis on the physical picture and theoretical understanding.
interface scattering / transverse shift / electron optics
[1] |
F. Goos and H. Hänchen, Ein neuer und fundamentaler Versuch zur Totalreflexion, Ann. Phys. 436(7–8), 333 (1947)
CrossRef
ADS
Google scholar
|
[2] |
F. Fornel, Evanescent Waves from Newtonian Optics to Atomic Optics, Berlin: Springer, 2010
|
[3] |
F. Fedorov, K teorii polnogo otrazheniya, Dokl. Akad. Nauk SSSR 105, 465 (1955)
|
[4] |
C. Imbert, Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized light beam, Phys. Rev. D 5(4), 787 (1972)
CrossRef
ADS
Google scholar
|
[5] |
M. Onoda, S. Murakami, and N. Nagaosa, Hall effect of light, Phys. Rev. Lett. 93(8), 083901 (2004)
CrossRef
ADS
Google scholar
|
[6] |
M. C. Chang and Q. Niu, Berry phase, hyperorbits, and the Hofstadter spectrum, Phys. Rev. Lett. 75(7), 1348 (1995)
CrossRef
ADS
Google scholar
|
[7] |
M. C. Chang and Q. Niu, Berry phase, hyperorbits, and the Hofstadter spectrum: Semiclassical dynamics in magnetic Bloch bands, Phys. Rev. B 53(11), 7010 (1996)
CrossRef
ADS
Google scholar
|
[8] |
G. Sundaram and Q. Niu, Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects, Phys. Rev. B 59(23), 14915 (1999)
CrossRef
ADS
Google scholar
|
[9] |
S. Murakami, N. Nagaosa, and S. C. Zhang, Dissipationless quantum spin current at room temperature, Science 301(5638), 1348 (2003)
CrossRef
ADS
Google scholar
|
[10] |
J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. MacDonald, Universal intrinsic spin Hall effect, Phys. Rev. Lett. 92(12), 126603 (2004)
CrossRef
ADS
Google scholar
|
[11] |
K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, Spin–orbit interactions of light, Nat. Photonics 9(12), 796 (2015)
CrossRef
ADS
Google scholar
|
[12] |
O. Hosten and P. Kwiat, Observation of the spin Hall effect of light via weak measurements, Science 319(5864), 787 (2008)
CrossRef
ADS
Google scholar
|
[13] |
X. Zhou, Z. Xiao, H. Luo, and S. Wen, Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements, Phys. Rev. A 85(4), 043809 (2012)
CrossRef
ADS
Google scholar
|
[14] |
X. Yin , Z. Ye, J. Rho, Y. Wang, and X. Zhang, Photonic spin Hall effect at metasurfaces, Science 339(6126), 1405 (2013)
CrossRef
ADS
Google scholar
|
[15] |
X. Zhou, X. Ling, H. Luo, and S. Wen, Identifying graphene layers via spin Hall effect of light, Appl. Phys. Lett. 101(25), 251602 (2012)
CrossRef
ADS
Google scholar
|
[16] |
S. C. Miller and N. Ashby, Shifts of electron beam position due to total reflection at a barrier, Phys. Rev. Lett. 29(11), 740 (1972)
CrossRef
ADS
Google scholar
|
[17] |
D. M. Fradkin and R. J. Kashuba, Spatial displacement of electrons due to multiple total reflections, Phys. Rev. D 9(10), 2775 (1974)
CrossRef
ADS
Google scholar
|
[18] |
D. M. Fradkin and R. J. Kashuba, Position-operator method for evaluating the shift of a totally reflected electron, Phys. Rev. D 10(4), 1137 (1974)
CrossRef
ADS
Google scholar
|
[19] |
N. A. Sinitsyn, Q. Niu, J. Sinova, and K. Nomura, Disorder effects in the anomalous Hall effect induced by Berry curvature, Phys. Rev. B 72(4), 045346 (2005)
CrossRef
ADS
Google scholar
|
[20] |
X. Chen, C. F. Li, and Y. Ban, Tunable lateral displacement and spin beam splitter for ballistic electrons in twodimensional magnetic-electric nanostructures, Phys. Rev. B 77(7), 073307 (2008)
CrossRef
ADS
Google scholar
|
[21] |
X. Chen, X. J. Lu, Y. Wang, and C. F. Li, Controllable Goos–Hänchen shifts and spin beam splitter for ballistic electrons in a parabolic quantum well under a uniform magnetic field, Phys. Rev. B 83(19), 195409 (2011)
CrossRef
ADS
Google scholar
|
[22] |
C. W. J. Beenakker, R. A. Sepkhanov, A. R. Akhmerov, and J. Tworzydło, Quantum Goos–Hänchen effect in graphene, Phys. Rev. Lett. 102(14), 146804 (2009)
CrossRef
ADS
Google scholar
|
[23] |
L. Zhao and S. F. Yelin, Proposal for graphene-based coherent buffers and memories, Phys. Rev. B 81(11), 115441 (2010)
CrossRef
ADS
Google scholar
|
[24] |
M. Sharma and S. Ghosh, Electron transport and Goos–Hänchen shift in graphene with electric and magnetic barriers: optical analogy and band structure, J. Phys.: Condens. Matter 23(5), 055501 (2011)
CrossRef
ADS
Google scholar
|
[25] |
Z. Wu, F. Zhai, F. M. Peeters, H. Q. Xu, and K. Chang, Valley-dependent brewster angles and Goos–Hänchen effect in strained graphene, Phys. Rev. Lett. 106(17), 176802 (2011)
CrossRef
ADS
Google scholar
|
[26] |
X. Chen, J. W. Tao, and Y. Ban, Goos–Hänchen-like shifts for Dirac fermions in monolayer graphene barrier, Eur. Phys. J. B 79(2), 203 (2011)
CrossRef
ADS
Google scholar
|
[27] |
X. Chen , P. L. Zhao, and X. J. Lu, Giant negative and positive lateral shifts in graphene superlattices, Eur. Phys. J. B 86(5), 223 (2013)
CrossRef
ADS
Google scholar
|
[28] |
S. Chen , Z.Han, M. M.Elahi, K. M. M.Habib, L.Wang, B.Wen, Y. Gao, T.Taniguchi, K.Watanabe, J.Hone, A. W.Ghosh, and C. R.Dean, Electron optics with p-n junctions in ballistic graphene, Science 353(6307), 1522 (2016)
CrossRef
ADS
Google scholar
|
[29] |
J.Spector, H. L. Stormer, K. W.Baldwin, L. N.Pfeiffer, and K. W.West, Electron focusing in two‐dimensional systems by means of an electrostatic lens, Appl. Phys. Lett. 56(13), 1290 (1990)
CrossRef
ADS
Google scholar
|
[30] |
L. W.Molenkamp, A. A. M.Staring, C. W. J.Beenakker, R.Eppenga, C. E. Timmering, J. G. Williamson, C. J. P. M. Harmans, and C. T. Foxon, Electron-beam collimation with a quantum point contact, Phys. Rev. B 41(2), 1274 (1990)
CrossRef
ADS
Google scholar
|
[31] |
D.Dragoman and M.Dragoman, Optical analogue structures to mesoscopic devices,Prog. Quantum Electron. 23(4–5), 131 (1999)
CrossRef
ADS
Google scholar
|
[32] |
Q. D.Jiang, H. Jiang, H.Liu, Q. F.Sun, and X. C.Xie, Topological Imbert–Fedorov Shift in Weyl Semimetals, Phys. Rev. Lett. 115(15), 156602 (2015)
CrossRef
ADS
Google scholar
|
[33] |
S. A. Yang , H.Pan, and F.Zhang, Chirality-Dependent Hall Effect in Weyl Semimetals, Phys. Rev. Lett. 115(15), 156603 (2015)
CrossRef
ADS
Google scholar
|
[34] |
L. Wang and S. K.Jian, Imbert–Fedorov shift in Weyl semimetals: Dependence on monopole charge and intervalley scattering, Phys. Rev. B 96(11), 115448 (2017)
CrossRef
ADS
Google scholar
|
[35] |
U.Chattopadhyay, L.K.Shi, B.Zhang, J. C. W.Song, and Y. D.Chong, Fermi arc induced vortex structure in Weyl beam shifts, arXiv: 1809.03159 (2018)
|
[36] |
A. F.Andreev , Thermal conductivity of the intermediate state of superconductors, Sov. Phys. JETP 19, 1228 (1964)
|
[37] |
P. G.de Gennes , Superconductivity in Metals and Alloys, New York: Benjamin, 1966
|
[38] |
Y.Liu, Z. M.Yu, and S. A. Yang, Transverse shift in Andreev reflection, Phys. Rev. B 96(12), 121101 (2017)
CrossRef
ADS
Google scholar
|
[39] |
Y.Liu, Z. M.Yu, H. Jiang, and S. A. Yang, Goos–Hänchen-like shifts at a metal/superconductor interface, Phys. Rev. B 98(7), 075151 (2018)
CrossRef
ADS
Google scholar
|
[40] |
Z. M.Yu, Y. Liu, Y.Yao, and S. A. Yang, Unconventional pairing induced anomalous transverse shift in Andreev reflection, Phys. Rev. Lett. 121(17), 176602 (2018)
CrossRef
ADS
Google scholar
|
[41] |
Y. Liu , Z. M.Yu, J.Liu, H.Jiang, and S. A.Yang, Transverse shift in crossed Andreev reflection, Phys. Rev. B 98(19), 195141 (2018)
CrossRef
ADS
Google scholar
|
[42] |
J. M.Byers and M. E.Flatté, Probing spatial correlations with nanoscale two-contact tunneling, Phys. Rev. Lett. 74(2), 306 (1995)
CrossRef
ADS
Google scholar
|
[43] |
G. Deutscher and D.Feinberg, Coupling superconductingferromagnetic point contacts by Andreev reflections, Appl. Phys. Lett. 76(4), 487 (2000)
CrossRef
ADS
Google scholar
|
[44] |
X.Chen , X. J.Lu, Y.Ban, and C. F. Li, Electronic analogy of the Goos–Hänchen effect: A review, J. Opt. 15(3), 033001 (2013)
CrossRef
ADS
Google scholar
|
[45] |
K. Y.Bliokh and A.Aiello, Goos–Hänchen and Imbert–Fedorov beam shifts: An overview, J. Opt. 15(1), 014001 (2013)
CrossRef
ADS
Google scholar
|
[46] |
D.Xiao, M. C.Chang, and Q.Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82(3), 1959 (2010)
CrossRef
ADS
Google scholar
|
[47] |
S. A.Yang, G. S. D.Beach, C. Knutson, D.Xiao, Z.Zhang, M.Tsoi, Q.Niu, A. H. MacDonald, and J. L.Erskine, Topological electromotive force from domain-wall dynamics in a ferromagnet, Phys. Rev. B 82(5), 054410 (2010)
CrossRef
ADS
Google scholar
|
[48] |
Y.Gao , S. A.Yang, and Q.Niu, Field induced positional shift of Bloch electrons and its dynamical implications, Phys. Rev. Lett. 112(16), 166601 (2014)
CrossRef
ADS
Google scholar
|
[49] |
Y.Gao , S. A.Yang, and Q. Niu, Geometrical effects in orbital magnetic susceptibility, Phys. Rev. B 91(21), 214405 (2015)
CrossRef
ADS
Google scholar
|
[50] |
Y. Gao, S. A. Yang, and Q.Niu, Intrinsic relative magnetoconductivity of nonmagnetic metals, Phys. Rev. B 95(16), 165135 (2017)
CrossRef
ADS
Google scholar
|
[51] |
D.Culcer, Y.Yao, and Q. Niu, Coherent wave-packet evolution in coupled bands, Phys. Rev. B 72(8), 085110 (2005)
CrossRef
ADS
Google scholar
|
[52] |
X.Wan, A. M.Turner, A. Vishwanath, and S. Y. Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B 83(20), 205101 (2011)
CrossRef
ADS
Google scholar
|
[53] |
N. P.Armitage, E. J.Mele, and A. Vishwanath, Weyl and Dirac semimetals in three-dimensional solids, Rev. Mod. Phys. 90(1), 015001 (2018)
CrossRef
ADS
Google scholar
|
[54] |
S. A.Yang , Dirac and Weyl materials: Fundamental aspects and some spintronics applications, SPIN 06(02), 1640003 (2016)
CrossRef
ADS
Google scholar
|
[55] |
Q. D. Jiang, H.Jiang, H.Liu, Q. F.Sun, and X. C.Xie, Chiral wave-packet scattering in Weyl semimetals, Phys. Rev. B 93(19), 195165 (2016)
CrossRef
ADS
Google scholar
|
[56] |
G. E.Blonder, M.Tinkham, and T. M.Klapwijk, Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion, Phys. Rev. B 25(7), 4515 (1982)
CrossRef
ADS
Google scholar
|
[57] |
M. J. M.de Jong and C. W. J.Beenakker, Andreev reflection in ferromagnet-superconductor junctions, Phys. Rev. Lett. 74(9), 1657 (1995)
CrossRef
ADS
Google scholar
|
[58] |
S. Kashiwaya and Y. Tanaka, Tunnelling effects on surface bound states in unconventional superconductors, Rep. Prog. Phys. 63(10), 1641 (2000)
CrossRef
ADS
Google scholar
|
[59] |
H. Plehn , U.Gunsenheimer, and R.Kümmel, Subgap peak and Tomash-McMillan-Anderson oscillations in the density of states of SNS Bridges.,J. Low Temp. Phys. 83(1–2), 71 (1991)
CrossRef
ADS
Google scholar
|
[60] |
J.Hara, M. Ashida, and K.Nagai, Pair potential and density of states in proximity-contact superconducting–normal-metal double layers, Phys. Rev. B 47(17), 11263 (1993)
CrossRef
ADS
Google scholar
|
[61] |
H.Plehn, O. J.Wacker, and R.Kümmel, Electronic structure of superconducting multilayers, Phys. Rev. B 49(17), 12140 (1994)
CrossRef
ADS
Google scholar
|
[62] |
C. W. J.BeenakkerSpecular Andreev reflection in graphene, Phys. Rev. Lett. 97(6), 067007 (2006)
CrossRef
ADS
Google scholar
|
[63] |
H.Weng , Y.Liang, Q.Xu, R.Yu, Z. Fang, X.Dai, and Y.Kawazoe, Topological node-line semimetal in threedimensional graphene networks, Phys. Rev. B 92(4), 045108 (2015)
CrossRef
ADS
Google scholar
|
[64] |
Y.Chen, Y.Xie, S. A.Yang, H.Pan, F. Zhang, M. L.Cohen, and S.Zhang, Nanostructured carbon allotropes with Weyl-like loops and points, Nano Lett. 15(10), 6974 (2015)
CrossRef
ADS
Google scholar
|
[65] |
M. Sigrist, A.Avella, and F.Mancini, Introduction to unconventional superconductivity, AIP Conf. Proc. 789, 165 (2005)
CrossRef
ADS
Google scholar
|
[66] |
Y.Tanaka and S.Kashiwaya, Theory of tunneling spectroscopy of d-wave superconductors, Phys. Rev. Lett. 74(17), 3451 (1995)
CrossRef
ADS
Google scholar
|
[67] |
C. C. Tsuei and J. R.Kirtley, Pairing symmetry in cuprate superconductors, Rev. Mod. Phys. 72(4), 969 (2000)
CrossRef
ADS
Google scholar
|
[68] |
A. P. Mackenzie and Y. Maeno, The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing, Rev. Mod. Phys. 75(2), 657 (2003)
CrossRef
ADS
Google scholar
|
[69] |
C.Kallin and J.Berlinsky, Chiral superconductors, Rep. Prog. Phys. 79(5), 054502 (2016)
CrossRef
ADS
Google scholar
|
[70] |
D.Beckmann , H. B.Weber, and H. v.Löhneysen, Evidence for Crossed Andreev Reflection in Superconductor-Ferromagnet Hybrid Structures, Phys. Rev. Lett. 93(19), 197003 (2004)
CrossRef
ADS
Google scholar
|
[71] |
S.Russo, M.Kroug, T. M. Klapwijk, and A. F. Morpurgo, Experimental observation of bias-dependent nonlocal Andreev reflection, Phys. Rev. Lett. 95(2), 027002 (2005)
CrossRef
ADS
Google scholar
|
[72] |
P.Cadden-Zimansky, and V.Chandrasekhar, Nonlocal correlations in normal-metal superconducting systems, Phys. Rev. Lett. 97(23), 237003 (2006)
CrossRef
ADS
Google scholar
|
[73] |
M.Veldhorst, and A.Brinkman, Nonlocal Cooper pair splitting in a pSn junction, Phys. Rev. Lett. 105(10), 107002 (2010)
CrossRef
ADS
Google scholar
|
[74] |
S. Y.Lee , A.Goussev, O.Georgiou, G.Gligorić, and A.Lazarides, Sticky Goos–Hänchen effect at normal/superconductor interface, Europhys. Lett. (EPL) 103(2), 20004 (2013)
CrossRef
ADS
Google scholar
|
[75] |
K. S. Novoselov , A. K. Geim, S. V.Morozov, D.Jiang, Y.Zhang, S. V.Dubonos, I. V.Grigorieva, and A. A.Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
CrossRef
ADS
Google scholar
|
[76] |
A. H.Castro Neto, F.Guinea, N. M. R.Peres, K. S.Novoselov, and A. K.Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
CrossRef
ADS
Google scholar
|
[77] |
A.Ohtomo and H. Hwang, A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface, Nature 427(6973), 423 (2004)
CrossRef
ADS
Google scholar
|
[78] |
L. Liu, J. Park, D. A.Siegel, K. F.McCarty, K. W. Clark, W. Deng, L. Basile, J. C.Idrobo, A. P.Li, and G. Gu, Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges, Science 343(6167), 163 (2014)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |