Plug-and-play dual-phase-modulated continuous-variable quantum key distribution with photon subtraction

Xiao-Dong Wu , Yi-Jun Wang , Hai Zhong , Qin Liao , Ying Guo

Front. Phys. ›› 2019, Vol. 14 ›› Issue (4) : 41501

PDF (2603KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (4) : 41501 DOI: 10.1007/s11467-019-0881-8
LETTER

Plug-and-play dual-phase-modulated continuous-variable quantum key distribution with photon subtraction

Author information +
History +
PDF (2603KB)

Abstract

Plug-and-play dual-phase-modulated continuous-variable quantum key distribution (CVQKD) protocol can effectively solve the security loopholes associated with transmitting local oscillator (LO). However, this protocol has larger excess noise compared with one-way Gaussian-modulated coherent-states scheme, which limits the maximal transmission distance to a certain degree. In this paper, we show a reliable solution for this problem by employing non-Gaussian operation, especially, photon subtraction operation, which provides a way to improve the performance of plug-and-play dual-phase-modulated CVQKD protocol. The photon subtraction operation shows experimental feasibility in the plug-andplay configuration since it can be implemented under current technology. Security results indicate that the photon subtraction operation can evidently enhance the maximal transmission distance of the plug-and-play dual-phase-modulated CVQKD protocol, which effectively makes up the drawback of the original one. Furthermore, we achieve the tighter bound of the transmission distance by considering the finite-size effect, which is more practical compared with that achieved in the asymptotic limit.

Keywords

plug-and-play / dual-phase-modulated / continuous variable / quantum key distribution / photon subtraction

Cite this article

Download citation ▾
Xiao-Dong Wu, Yi-Jun Wang, Hai Zhong, Qin Liao, Ying Guo. Plug-and-play dual-phase-modulated continuous-variable quantum key distribution with photon subtraction. Front. Phys., 2019, 14(4): 41501 DOI:10.1007/s11467-019-0881-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. K. Lo, M. Curty, and K. Tamaki, Secure quantum key distribution, Nat. Photonics 8(8), 595 (2014)

[2]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Quantum cryptography, Rev. Mod. Phys. 74(1), 145 (2002)

[3]

V. Scarani, H. Bechmann-Pasquinucci, N. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, The security of practical quantum key distribution, Rev. Mod. Phys. 81(3), 1301 (2009)

[4]

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, Gaussian quantum information, Rev. Mod. Phys. 84(2), 621 (2012)

[5]

W. K. Wootters and W. H. Zurek, A single quantum cannot be cloned, Nature 299(5886), 802 (1982)

[6]

H. K. Lo and H. F. Chau, Unconditional security of quantum key distribution over arbitrarily long distances, Science 283(5410), 2050 (1999)

[7]

M. Gessner, L. Pezzè, and A. Smerzi, Efficient entanglement criteria for discrete, continuous, and hybrid variables, Phys. Rev. A 94(2), 020101 (2016)

[8]

S. Takeda, M. Fuwa, P. van Loock, and A. Furusawa, Entanglement swapping between discrete and continuous variables, Phys. Rev. Lett. 114(10), 100501 (2015)

[9]

X. D. Wu, Q. Liao, D. Huang, X. H. Wu, and Y. Guo, Balancing four-state continuous-variable quantum key distribution with linear optics cloning machine, Chin. Phys. B 26(11), 110304 (2017)

[10]

D. Huang, D. Lin, C. Wang, W. Liu, S. Fang, J. Peng, P. Huang, and G. Zeng, Continuous-variable quantum key distribution with 1 Mbps secure key rate, Opt. Express 23(13), 17511 (2015)

[11]

D. Huang, P. Huang, D. Lin, and G. Zeng, Long-distance continuous-variable quantum key distribution by controlling excess noise, Sci. Rep. 6(1), 19201 (2016)

[12]

S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, High-rate measurement-deviceindependent quantum cryptography, Nat. Photonics 9(6), 397 (2015)

[13]

D. Huang, P. Huang, H. Li, T. Wang, Y. Zhou, and G. Zeng, Field demonstration of a continuous-variable quantum key distribution network, Opt. Lett. 41(15), 3511 (2016)

[14]

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, Entanglement-based quantum communication over 144 km, Nat. Phys. 3(7), 481 (2007)

[15]

C. Erven, C. Couteau, R. Laflamme, and G. Weihs, Entangled quantum key distribution over two free-space optical links, Opt. Express 16(21), 16840 (2008)

[16]

Y. Ding, D. Bacco, K. Dalgaard, X. Cai, X. Zhou, K. Rottwitt, and L. K. Oxenløwe, High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits, npj Quantum Inform. 3(1), 25 (2017)

[17]

J. Fang, P. Huang, and G. Zeng, Multichannel parallel continuous-variable quantum key distribution with Gaussian modulation, Phys. Rev. A 89(2), 022315 (2014)

[18]

F. Grosshans and P. Grangier, Continuous variable quantum cryptography using coherent states, Phys. Rev. Lett. 88(5), 057902 (2002)

[19]

P. Huang, J. Fang, and G. Zeng, State-discrimination attack on discretely modulated continuous-variable quantum key distribution, Phys. Rev. A 89(4), 042330 (2014)

[20]

Y. Guo, Q. Liao, Y. Wang, D. Huang, P. Huang, and G. Zeng, Performance improvement of continuous-variable quantum key distribution with an entangled source in the middle via photon subtraction, Phys. Rev. A 95(3), 032304 (2017)

[21]

P. Jouguet, S. Kunzjacques, A. Leverrier, P. Grangier, and E. Diamanti, Experimental demonstration of longdistance continuous-variable quantum key distribution, Nat. Photonics 7(5), 378 (2013)

[22]

A. Leverrier and P. Grangier, Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation, Phys. Rev. Lett. 102(18), 180504 (2009)

[23]

A. Leverrier and P. Grangier, Continuous-variablequantum-key-distribution protocols with a non-Gaussian modulation, Phys. Rev. A 83(4), 042312 (2011)

[24]

F. Grosshans, Collective attacks and unconditional security in continuous variable quantum key distribution, Phys. Rev. Lett. 94(2), 020504 (2005)

[25]

M. Navascués and A. Acín, Security bounds for continuous variables quantum key distribution, Phys. Rev. Lett. 94(2), 020505 (2005)

[26]

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, Continuous variable quantum key distribution: Finite-key analysis of composable security against coherent attacks, Phys. Rev. Lett. 109(10), 100502 (2012)

[27]

A. Leverrier, F. Grosshans, and P. Grangier, Finite-size analysis of a continuous-variable quantum key distribution, Phys. Rev. A 81(6), 062343 (2010)

[28]

A. Leverrier, Composable security proof for continuousvariable quantum key distribution with coherent states, Phys. Rev. Lett. 114(7), 070501 (2015)

[29]

B. Qi, L. L. Huang, L. Qian, and H. K. Lo, Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers, Phys. Rev. A 76(5), 052323 (2007)

[30]

X. Q. Dinh, Z. Zhang, and P. L. Voss, A 24 km fiber-based discretely signaled continuous variable quantum key distribution system, Opt. Express 17(26), 24244 (2009)

[31]

J. Lodewyck, M. Bloch, R. Garc’ıa-Patrón, S. Fossier, E. Karpov, E. Diamanti, T. Debuiss-chert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, Quantum key distribution over 25 km with an all-fiber continuous-variable system, Phys. Rev. A 76(4), 042305 (2007)

[32]

J. Z. Huang, C. Weedbrook, Z. Q. Yin, S. Wang, H. W. Li, W. Chen, G. C. Guo, and Z. F. Han, Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack, Phys. Rev. A 87(6), 062329 (2013)

[33]

X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, Wavelength attack on practical continuous-variable quantumkey-distribution system with a heterodyne protocol, Phys. Rev. A 87(5), 052309 (2013)

[34]

H. Qin, R. Kumar, and R. Alléaume, Saturation attack on continuous-variable quantum key distribution system, Proc. SPIE 8899, Emerging Technologies in Security and Defence, and Quantum Security II, and Unmanned Sensor Systems X, 88990N (2013)

[35]

X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems, Phys. Rev. A 88(2), 022339 (2013)

[36]

D. Huang, P. Huang, D. Lin, C. Wang, and G. Zeng, High-speed continuous-variable quantum key distribution without sending a local oscillator, Opt. Lett. 40(16), 3695 (2015)

[37]

B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, Generating the local oscillator “locally” in continuousvariable quantum key distribution based on coherent detection, Phys. Rev. X 5(4), 041009 (2015)

[38]

D. B. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, Self-referenced continuous-variable quantum key distribution protocol, Phys. Rev. X 5(4), 041010 (2015)

[39]

J. Trapani, B. Teklu, S. Olivares, and M. G. Paris, Quantum phase communication channels in the presence of static and dynamical phase diffusion, Phys. Rev. A 92(1), 012317 (2015)

[40]

B. Teklu, J. Trapani, S. Olivares, and M. G. Paris, Noisy quantum phase communication channels, Phys. Scr. 90(7), 074027 (2015)

[41]

Y. Y. Jin, S. X. Qin, H. Zu, L. Zhou, W. Zhong, and Y. B. Sheng, Heralded amplification of single-photon entanglement with polarization feature, Front. Phys. 13(5), 130321 (2018)

[42]

M. Legre, H. Zbinden, and N. Gisin, Implementation of continuous variable quantum cryptography in optical fibres using a go-&-return configuration, Quantum Inf. Comput. 6, 326 (2006)

[43]

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, Trojan-horse attacks on quantum-key-distribution systems, Phys. Rev. A 73(2), 022320 (2006)

[44]

N. Jain, E. Anisimova, I. Khan, V. Makarov, C. Marquardt, and G. Leuchs, Trojan-horse attacks threaten the security of practical quantum cryptography, New J. Phys. 16(12), 123030 (2014)

[45]

D. Huang, P. Huang, T. Wang, H. Li, Y. Zhou, and G. Zeng, Continuous-variable quantum key distribution based on a plug-and-play dual-phase-modulated coherent-states protocol, Phys. Rev. A 94(3), 032305 (2016)

[46]

P. Huang, G. He, J. Fang, and G. Zeng, Performance improvement of continuous-variable quantum key distribution via photon subtraction, Phys. Rev. A 87(1), 012317 (2013)

[47]

C. J. Liu, W. Ye, W. D. Zhou, H. L. Zhang, J. H. Huang, and L. Y. Hu, Entanglement of coherent superposition of photon-subtraction squeezed vacuum, Front. Phys. 12(5), 120307 (2017)

[48]

Z. Li, Y. Zhang, X. Wang, B. Xu, X. Peng, and H. Guo, Non-Gaussian postselection and virtual photon subtraction in continuous-variable quantum key distribution, Phys. Rev. A 93(1), 012310 (2016)

[49]

S. Zhang, Y. Dong, X. Zou, B. Shi, and G. Guo, Continuous-variable-entanglement distillation with photon addition, Phys. Rev. A 88(3), 032324 (2013)

[50]

X. G. Meng, J. S. Wang, B. L. Liang, and C. X. Han, Evolution of a two-mode squeezed vacuum for amplitude decay via continuous-variable entangled state approach, Front. Phys. 13(5), 130322 (2018)

[51]

R. García-Patrón and N. J. Cerf, Unconditional optimality of gaussian attacks against continuous-variable quantum key distribution, Phys. Rev. Lett. 97(19), 190503 (2006)

[52]

Y. Shen, X. Peng, J. Yang, and H. Guo, Continuousvariable quantum key distribution with Gaussian source noise, Phys. Rev. A 83(5), 052304 (2011)

[53]

K. Wang, X. T. Yu, and Z. C. Zhang, Two-qubit entangled state teleportation via optimal POVM and partially entangled GHZ state, Front. Phys. 13(5), 130320 (2018)

[54]

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, Single-photon sources and detectors, Rev. Sci. Instrum. 82(7), 071101 (2011)

[55]

A. Kitagawa, M. Takeoka, M. Sasaki, and A. Chefles, Entanglement evaluation of non-Gaussian states generated by photon subtraction from squeezed states, Phys. Rev. A 73(4), 042310 (2006)

[56]

G. Vidal and R. F. Werner, Computable measure of entanglement, Phys. Rev. A 65(3), 032314 (2002)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (2603KB)

819

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/