Entanglement measures of a new type pseudo-pure state in accelerated frames
Qian Dong, Ariadna J. Torres-Arenas, Guo-Hua Sun, Wen-Chao Qiang, Shi-Hai Dong
Entanglement measures of a new type pseudo-pure state in accelerated frames
In this work we analyze the characteristics of quantum entanglement of the Dirac field in noninertial reference frames in the context of a new type pseudo-pure state, which is composed of the Bell states. This will help us to understand the relationship between the relativity and quantum information theory. Some states will be changed from entangled states into separable ones around the critical value F = 1/4, but there is no such a critical value for the variable y related to acceleration a. We find that the negativity NABI (ρTAABI) increases with F but decreases with the variable y, while the variation of the negativity NBIBII(ρTAABI) is opposite to that of the negativity NABI (ρTAABI). We also study the von Neumann entropies S(ρABI) and S(ρBIBII). We find that the S(ρABI) increases with variable y but S(ρBIBII) is independent of it. However, both S(ρABI) and S(ρBIBII) first decreases with F and then increases with it. The concurrences C(ρABI) and C(ρBIBII) are also discussed. We find that the former decreases with y while the latter increases with y but both of them first increase with F and then decrease with it.
negativity / pseudo-pure state / noninertial frame / entanglement / von Neumann entropy / concurrence
[1] |
P. M. Alsing and G. J. Milburn, Teleportation with a uniformly accelerated partner, Phys. Rev. Lett. 91(18), 180404 (2003)
CrossRef
ADS
Google scholar
|
[2] |
A. Peres and D. R. Terno, Quantum information and relativity theory, Rev. Mod. Phys. 76(1), 93 (2004) (and references therein)
CrossRef
ADS
Google scholar
|
[3] |
I. Fuentes-Schuller and R. B. Mann, Alice falls into a black hole: Entanglement in noninertial frames, Phys. Rev. Lett. 95(12), 120404 (2005)
CrossRef
ADS
Google scholar
|
[4] |
L. Lamata, M. A. Martin-Delgado, and E. Solano, Relativity and Lorentz invariance of entanglement distillability, Phys. Rev. Lett. 97(25), 250502 (2006)
CrossRef
ADS
Google scholar
|
[5] |
P. M. Alsing, I. Fuentes-Schuller, R. B. Mann, and T. E. Tessier, Entanglement of Dirac fields in noninertial frames, Phys. Rev. A 74(3), 032326 (2006)
CrossRef
ADS
Google scholar
|
[6] |
K. Bradler, Eavesdropping of quantum communication from a noninertial frame, Phys. Rev. A 75(2), 022311 (2007)
CrossRef
ADS
Google scholar
|
[7] |
Y. C. Ou and H. Fan, Monogamy inequality in terms of negativity for three-qubit states, Phys. Rev. A 75(6), 062308 (2007)
CrossRef
ADS
Google scholar
|
[8] |
D. E. Bruschi, J. Louko, E. Martín-Martínez, A. Dragan, and I. Fuentes, Unruh effect in quantum information beyond the single-mode approximation, Phys. Rev. A 82(4), 042332 (2008)
CrossRef
ADS
Google scholar
|
[9] |
J. Wang and J. Jing, Multipartite entanglement of fermionic systems in noninertial frames, Phys. Rev. A 83(2), 022314 (2011)
CrossRef
ADS
Google scholar
|
[10] |
M.-R. Hwang, D. Park, and E. Jung, Tripartite entanglement in noninertial frame, Phys. Rev. A 83, 012111 (2001)
CrossRef
ADS
Google scholar
|
[11] |
Y. Yao, X. Xiao, L. Ge, X. G. Wang, and C. P. Sun, Quantum Fisher information in noninertial frames, Phys. Rev. A 89(4), 042336 (2014)
CrossRef
ADS
Google scholar
|
[12] |
S. Khan, Tripartite entanglement of fermionic system in accelerated frames, Ann. Phys. 348, 270 (2014)
CrossRef
ADS
Google scholar
|
[13] |
S. Khan, N. A. Khan, and M. K. Khan, Non-maximal tripartite entanglement degradation of Dirac and scalar fields in non-inertial frames, Commum. Theor. Phys. 61(3), 281 (2014)
CrossRef
ADS
Google scholar
|
[14] |
D. E. Bruschi, A. Dragan, I. Fuentes, and J. Louko, Particle and antiparticle bosonic entanglement in noninertial frames, Phys. Rev. D 86(2), 025026 (2012)
CrossRef
ADS
Google scholar
|
[15] |
E. Martín-Martínez and I. Fuentes, Redistribution of particle and antiparticle entanglement in noninertial frames, Phys. Rev. A 83(5), 052306 (2011)
CrossRef
ADS
Google scholar
|
[16] |
I. Fuentes-Schuller and R. B. Mann, Alice falls into a black hole: Entanglement in noninertial frames, Phys. Rev. Lett. 95(12), 120404 (2005)
CrossRef
ADS
Google scholar
|
[17] |
X. Xiao, Y. M. Xie, Y. Yao, Y. L. Li, and J. Wang, Retrieving the lost fermionic entanglement by partial measurement in noninertial frames, Ann. Phys. 390, 83 (2018)
CrossRef
ADS
Google scholar
|
[18] |
W. C. Qiang, G. H. Sun, O. Camacho-Nieto, and S. H. Dong, Multipartite entanglement of fermionic systems in noninertial frames revisited, arXiv: 1711.04230 (2017)
|
[19] |
S. Moradi, Distillability of entanglement in accelerated frames, Phys. Rev. A 79(6), 064301 (2009)
CrossRef
ADS
Google scholar
|
[20] |
H. Mehri-Dehnavi, B. Mirza, H. Mohammadzadeh, and R. Rahimi, Pseudo-entanglement evaluated in noninertial frames, Ann. Phys. 326(5), 1320 (2011)
CrossRef
ADS
Google scholar
|
[21] |
R. F. Werner, Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model, Phys. Rev. A 40(8), 4277 (1989)
CrossRef
ADS
Google scholar
|
[22] |
W. C. Qiang, Q. Dong, G. H. Sun and S. H. Dong (submitted)
|
[23] |
R. A. Horn and C. R. Johnson, Matrix Analysis, New York: Cambridge University Press, 1985, pp 205–415, 441
|
[24] |
W. C. Qiang, G. H. Sun, Q. Dong, and S. H. Dong, Genuine multipartite concurrence for entanglement of Dirac fields in noninertial frames, Phys. Rev. A 98(2), 022320 (2018)
CrossRef
ADS
Google scholar
|
[25] |
S. A. Najafizade, H. Hassanabadi, and S. Zarrinkamar, Nonrelativistic Shannon information entropy for Kratzer potential, Chin. Phys. B 25(4), 040301 (2016)
CrossRef
ADS
Google scholar
|
[26] |
S. A. Najafizade, H. Hassanabadi, and S. Zarrinkamar, Nonrelativistic Shannon information entropy for Killingbeck potential, Can. J. Phys. 94(10), 1085 (2016)
CrossRef
ADS
Google scholar
|
[27] |
Y. Q. Li and G. Q. Zhu, Concurrence vectors for entanglement of high-dimensional systems, Front. Phys. China 3(3), 250 (2008)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |