Entanglement measures of a new type pseudo-pure state in accelerated frames

Qian Dong, Ariadna J. Torres-Arenas, Guo-Hua Sun, Wen-Chao Qiang, Shi-Hai Dong

PDF(3909 KB)
PDF(3909 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (2) : 21603. DOI: 10.1007/s11467-018-0876-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Entanglement measures of a new type pseudo-pure state in accelerated frames

Author information +
History +

Abstract

In this work we analyze the characteristics of quantum entanglement of the Dirac field in noninertial reference frames in the context of a new type pseudo-pure state, which is composed of the Bell states. This will help us to understand the relationship between the relativity and quantum information theory. Some states will be changed from entangled states into separable ones around the critical value F = 1/4, but there is no such a critical value for the variable y related to acceleration a. We find that the negativity NABI (ρTAABI) increases with F but decreases with the variable y, while the variation of the negativity NBIBII(ρTAABI) is opposite to that of the negativity NABI (ρTAABI). We also study the von Neumann entropies S(ρABI) and S(ρBIBII). We find that the S(ρABI) increases with variable y but S(ρBIBII) is independent of it. However, both S(ρABI) and S(ρBIBII) first decreases with F and then increases with it. The concurrences C(ρABI) and C(ρBIBII) are also discussed. We find that the former decreases with y while the latter increases with y but both of them first increase with F and then decrease with it.

Keywords

negativity / pseudo-pure state / noninertial frame / entanglement / von Neumann entropy / concurrence

Cite this article

Download citation ▾
Qian Dong, Ariadna J. Torres-Arenas, Guo-Hua Sun, Wen-Chao Qiang, Shi-Hai Dong. Entanglement measures of a new type pseudo-pure state in accelerated frames. Front. Phys., 2019, 14(2): 21603 https://doi.org/10.1007/s11467-018-0876-x

References

[1]
P. M. Alsing and G. J. Milburn, Teleportation with a uniformly accelerated partner, Phys. Rev. Lett. 91(18), 180404 (2003)
CrossRef ADS Google scholar
[2]
A. Peres and D. R. Terno, Quantum information and relativity theory, Rev. Mod. Phys. 76(1), 93 (2004) (and references therein)
CrossRef ADS Google scholar
[3]
I. Fuentes-Schuller and R. B. Mann, Alice falls into a black hole: Entanglement in noninertial frames, Phys. Rev. Lett. 95(12), 120404 (2005)
CrossRef ADS Google scholar
[4]
L. Lamata, M. A. Martin-Delgado, and E. Solano, Relativity and Lorentz invariance of entanglement distillability, Phys. Rev. Lett. 97(25), 250502 (2006)
CrossRef ADS Google scholar
[5]
P. M. Alsing, I. Fuentes-Schuller, R. B. Mann, and T. E. Tessier, Entanglement of Dirac fields in noninertial frames, Phys. Rev. A 74(3), 032326 (2006)
CrossRef ADS Google scholar
[6]
K. Bradler, Eavesdropping of quantum communication from a noninertial frame, Phys. Rev. A 75(2), 022311 (2007)
CrossRef ADS Google scholar
[7]
Y. C. Ou and H. Fan, Monogamy inequality in terms of negativity for three-qubit states, Phys. Rev. A 75(6), 062308 (2007)
CrossRef ADS Google scholar
[8]
D. E. Bruschi, J. Louko, E. Martín-Martínez, A. Dragan, and I. Fuentes, Unruh effect in quantum information beyond the single-mode approximation, Phys. Rev. A 82(4), 042332 (2008)
CrossRef ADS Google scholar
[9]
J. Wang and J. Jing, Multipartite entanglement of fermionic systems in noninertial frames, Phys. Rev. A 83(2), 022314 (2011)
CrossRef ADS Google scholar
[10]
M.-R. Hwang, D. Park, and E. Jung, Tripartite entanglement in noninertial frame, Phys. Rev. A 83, 012111 (2001)
CrossRef ADS Google scholar
[11]
Y. Yao, X. Xiao, L. Ge, X. G. Wang, and C. P. Sun, Quantum Fisher information in noninertial frames, Phys. Rev. A 89(4), 042336 (2014)
CrossRef ADS Google scholar
[12]
S. Khan, Tripartite entanglement of fermionic system in accelerated frames, Ann. Phys. 348, 270 (2014)
CrossRef ADS Google scholar
[13]
S. Khan, N. A. Khan, and M. K. Khan, Non-maximal tripartite entanglement degradation of Dirac and scalar fields in non-inertial frames, Commum. Theor. Phys. 61(3), 281 (2014)
CrossRef ADS Google scholar
[14]
D. E. Bruschi, A. Dragan, I. Fuentes, and J. Louko, Particle and antiparticle bosonic entanglement in noninertial frames, Phys. Rev. D 86(2), 025026 (2012)
CrossRef ADS Google scholar
[15]
E. Martín-Martínez and I. Fuentes, Redistribution of particle and antiparticle entanglement in noninertial frames, Phys. Rev. A 83(5), 052306 (2011)
CrossRef ADS Google scholar
[16]
I. Fuentes-Schuller and R. B. Mann, Alice falls into a black hole: Entanglement in noninertial frames, Phys. Rev. Lett. 95(12), 120404 (2005)
CrossRef ADS Google scholar
[17]
X. Xiao, Y. M. Xie, Y. Yao, Y. L. Li, and J. Wang, Retrieving the lost fermionic entanglement by partial measurement in noninertial frames, Ann. Phys. 390, 83 (2018)
CrossRef ADS Google scholar
[18]
W. C. Qiang, G. H. Sun, O. Camacho-Nieto, and S. H. Dong, Multipartite entanglement of fermionic systems in noninertial frames revisited, arXiv: 1711.04230 (2017)
[19]
S. Moradi, Distillability of entanglement in accelerated frames, Phys. Rev. A 79(6), 064301 (2009)
CrossRef ADS Google scholar
[20]
H. Mehri-Dehnavi, B. Mirza, H. Mohammadzadeh, and R. Rahimi, Pseudo-entanglement evaluated in noninertial frames, Ann. Phys. 326(5), 1320 (2011)
CrossRef ADS Google scholar
[21]
R. F. Werner, Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model, Phys. Rev. A 40(8), 4277 (1989)
CrossRef ADS Google scholar
[22]
W. C. Qiang, Q. Dong, G. H. Sun and S. H. Dong (submitted)
[23]
R. A. Horn and C. R. Johnson, Matrix Analysis, New York: Cambridge University Press, 1985, pp 205–415, 441
[24]
W. C. Qiang, G. H. Sun, Q. Dong, and S. H. Dong, Genuine multipartite concurrence for entanglement of Dirac fields in noninertial frames, Phys. Rev. A 98(2), 022320 (2018)
CrossRef ADS Google scholar
[25]
S. A. Najafizade, H. Hassanabadi, and S. Zarrinkamar, Nonrelativistic Shannon information entropy for Kratzer potential, Chin. Phys. B 25(4), 040301 (2016)
CrossRef ADS Google scholar
[26]
S. A. Najafizade, H. Hassanabadi, and S. Zarrinkamar, Nonrelativistic Shannon information entropy for Killingbeck potential, Can. J. Phys. 94(10), 1085 (2016)
CrossRef ADS Google scholar
[27]
Y. Q. Li and G. Q. Zhu, Concurrence vectors for entanglement of high-dimensional systems, Front. Phys. China 3(3), 250 (2008)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(3909 KB)

Accesses

Citations

Detail

Sections
Recommended

/