A two-density approach to the general many-body problem and a proof of principle for small atoms and molecules

Thomas Pope, Werner Hofer

PDF(866 KB)
PDF(866 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (2) : 23604. DOI: 10.1007/s11467-018-0872-1
RESEARCH ARTICLE
RESEARCH ARTICLE

A two-density approach to the general many-body problem and a proof of principle for small atoms and molecules

Author information +
History +

Abstract

An extended electron model fully recovers many of the experimental results of quantum mechanics while it avoids many of the pitfalls and remains generally free of paradoxes. The formulation of the manybody electronic problem here resembles the Kohn–Sham formulation of standard density functional theory. However, rather than referring electronic properties to a large set of single electron orbitals, the extended electron model uses only mass density and field components, leading to a substantial increase in computational efficiency. To date, the Hohenberg–Kohn theorems have not been proved for a model of this type, nor has a universal energy functional been presented. In this paper, we address these problems and show that the Hohenberg–Kohn theorems do also hold for a density model of this type. We then present a proof-of-concept practical implementation of this method and show that it reproduces the accuracy of more widely used methods on a test-set of small atomic systems, thus paving the way for the development of fast, efficient and accurate codes on this basis.

Keywords

many-body / condensed matter / Hartree–Fock / density functional theory / extended electrons

Cite this article

Download citation ▾
Thomas Pope, Werner Hofer. A two-density approach to the general many-body problem and a proof of principle for small atoms and molecules. Front. Phys., 2019, 14(2): 23604 https://doi.org/10.1007/s11467-018-0872-1

References

[1]
M. Levy, Universal variational functionals of electron densities, first-order density matrices, and natural spinorbitals and solution of the v-representability problem, Proc. Natl. Acad. Sci. USA 76, 6062 (1979)
CrossRef ADS Google scholar
[2]
M. Levy, J. P. Perdew, and V. Sahni, Exact differential equation for the density and ionization energy of a manyparticle system, Phys. Rev. A 30(5), 2745 (1984)
CrossRef ADS Google scholar
[3]
M. Pearson, E. Smargiassi, and P. A. Madden, Ab initio molecular dynamics with an orbital-free density functional, J. Phys.: Condens. Matter 5(19), 3221 (1993)
CrossRef ADS Google scholar
[4]
T. A. Wesolowski and Y. A. Wang, Recent Progress in Orbital-Free Density Functional Theory, Vol. 6, World Scientific,2013
CrossRef ADS Google scholar
[5]
J. Lehtomäki, I. Makkonen, A. Harju, O. Lopez-Acevedo, and M. A. Caro, Orbital-free density functional theory implementation with the projector augmented-wave method, J. Chem. Phys. 141, 234102 (2014)
CrossRef ADS Google scholar
[6]
V. V. Karasiev and S. B. Trickey, in Advances in Quantum Chemistry, Vol. 71, Elsevier, 2015, pp 221–245
[7]
D. Garcia-Aldea and J. Alvarellos, Approach to kinetic energy density functionals: Nonlocal terms with the structure of the von Weizsäcker functional, Phys. Rev. A 77(2), 022502 (2008)
CrossRef ADS Google scholar
[8]
C. Huang and E. A. Carter, Nonlocal orbital-free kinetic energy density functional for semiconductors, Phys. Rev. B 81(4), 045206 (2010)
CrossRef ADS Google scholar
[9]
I. Shin and E. A. Carter, Enhanced von Weizsäcker Wang–Govind–Carter kinetic energy density functional for semiconductors, J. Chem. Phys. 140, 18A531 (2014)
[10]
W. Mi, A. Genova, and M. Pavanello, Nonlocal kinetic energy functionals by functional integration, J. Chem. Phys. 148(18), 184107 (2018)
CrossRef ADS Google scholar
[11]
L. A. Constantin, E. Fabiano, and F. Della Sala, Nonlocal kinetic energy functional from the jellium-with-gap model: Applications to orbital-free density functional theory, Phys. Rev. B 97, 205137 (2018)
CrossRef ADS Google scholar
[12]
L. A. Constantin, E. Fabiano, and F. Della Sala, Semilocal Pauli–Gaussian kinetic functionals for orbital-free density functional theory calculations of solids, J. Phys. Chem. Lett. 9(15), 4385 (2018)
CrossRef ADS Google scholar
[13]
W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140(4A), A1133 (1965)
CrossRef ADS Google scholar
[14]
R. O. Jones, Density functional theory: Its origins, rise to prominence, and future, Rev. Mod. Phys. 87(3), 897 (2015)
CrossRef ADS Google scholar
[15]
V. Michaud-Rioux, L. Zhang, and H. Guo, RESCU: A real space electronic structure method, J. Comput. Phys. 307, 593 (2016)
CrossRef ADS Google scholar
[16]
J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, The SIESTA method for ab initio order-N materials simulation,J. Phys.: Condens. Matter 14(11), 2745 (2002)
CrossRef ADS Google scholar
[17]
C. K. Skylaris, P. D. Haynes, A. A. Mostofi, and M. C. Payne, Introducing ONETEP: Linear-scaling density functional simulations on parallel computers, J. Chem. Phys. 122(8), 084119 (2005)
CrossRef ADS Google scholar
[18]
F. Brockherde, L. Vogt, L. Li, M. E. Tuckerman, K. Burke, and K. R. Müller, Bypassing the Kohn–Sham equations with machine learning, Nat. Commun. 8(1), 872 (2017)
CrossRef ADS Google scholar
[19]
W. A. Hofer, Unconventional approach to orbital-free density functional theory derived from a model of extended electrons, Found. Phys. 41(4), 754 (2011)
CrossRef ADS Google scholar
[20]
T. Pope and W. Hofer, Spin in the extended electron model, Front. Phys. 12(3), 128503 (2017)
CrossRef ADS Google scholar
[21]
P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136(3B), B864 (1964)
CrossRef ADS Google scholar
[22]
L. de Broglie, Wave mechanics and the atomic structure of matter and of radiation, J. Phys. Radium 8, 225 (1927)
CrossRef ADS Google scholar
[23]
D. Bohm, A suggested interpretation of the quantum theory in terms of “hidden” variables (I), Phys. Rev. 85, 166 (1952)
CrossRef ADS Google scholar
[24]
D. Bohm, A suggested interpretation of the quantum theory in terms of “hidden” variables (II), Phys. Rev. 85, 180 (1952)
CrossRef ADS Google scholar
[25]
D. Hestenes, Local observables in the Dirac theory, J. Math. Phys. 14, 893 (1973)
CrossRef ADS Google scholar
[26]
D. Hestenes, Quantum mechanics from self-interaction, Found. Phys. 15, 63 (1985)
CrossRef ADS Google scholar
[27]
D. Hestenes, The zitterbewegung interpretation of quantum Mechanics, Found. Phys. 20, 1213 (1990)
CrossRef ADS Google scholar
[28]
J. S. Bell, On the problem of hidden variables in quantum mechanics, Rev. Mod. Phys. 38(3), 447 (1966)
CrossRef ADS Google scholar
[29]
K. S. Bell, H. Rieder, G. Meyer, S. W. Hla, F. Moresco, K. F. Braun, K. Morgenstern, J. Repp, S. Foelsch, and L. Bartels, The scanning tunnelling microscope as an operative tool: Doing physics and chemistry with single atoms and molecules, Phil. Trans. R. Soc. Lond. A 362, 1207 (2004)
CrossRef ADS Google scholar
[30]
W. A. Hofer, Heisenberg, uncertainty, and the scanning tunneling microscope, Front. Phys. 7(2), 218 (2012)
CrossRef ADS Google scholar
[31]
D. Hestenes and G. Sobczyk, Clifford Algebra to Geometric Calculus: A unified language for mathematics and physics, Vol. 5, Springer Science & Business Media, 2012
[32]
S. Gull, A. Lasenby, and C. Doran, Imaginary numbers are not real — The geometric algebra of spacetime, Found. Phys. 23(9), 1175 (1993)
CrossRef ADS Google scholar
[33]
C. Doran and A. Lasenby, Geometric Algebra for Physicists, Cambridge University Press, 2003
CrossRef ADS Google scholar
[34]
G. Benenti, G. Strini, and G. Casati, Principles of Quantum Computation and Information, World Scientific, 2004
CrossRef ADS Google scholar
[35]
C. Doran, A. Lasenby, and S. Gull, States and operators in the spacetime algebra, Found. Phys. 23(9), 1239 (1993)
CrossRef ADS Google scholar
[36]
W. A. Hofer, Elements of physics for the 21st century, in: Journal of Physics: Conference Series, Vol. 504, IOP Publishing, 2014, p. 012014
[37]
W. A. Hofer, Solving the Einstein–Podolsky–Rosen puzzle: The origin of non-locality in Aspect-type experiments, Front. Phys. 7(5), 504 (2012)
CrossRef ADS Google scholar
[38]
M. Hamermesh, Galilean invariance and the Schrodinger equation, Ann. Phys. 9, 518 (1960)
CrossRef ADS Google scholar
[39]
L. M. Sander, H. B. Shore, and L. Sham, Surface Structure of Electron–Hole Droplets, Phys. Rev. Lett. 31(8), 533 (1973)
CrossRef ADS Google scholar
[40]
R. Kalia and P. Vashishta, Surface structure of electronhole drops in germanium and silicon, Phys. Rev. B 17(6), 2655 (1978)
CrossRef ADS Google scholar
[41]
E. Boroński and R. Nieminen, Electron–positron densityfunctional theory, Phys. Rev. B 34(6), 3820 (1986)
CrossRef ADS Google scholar
[42]
T. Kreibich and E. Gross, Multicomponent densityfunctional theory for electrons and nuclei, Phys. Rev. Lett. 86, 2984 (2001)
CrossRef ADS Google scholar
[43]
T. Kreibich, R. van Leeuwen, and E. K. U. Gross, Multicomponent density-functional theory for electrons and nuclei, Phys. Rev. A 78(2), 022501 (2008)
CrossRef ADS Google scholar
[44]
J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23(10), 5048 (1981)
CrossRef ADS Google scholar
[45]
J. Paier, R. Hirschl, M. Marsman, and G. Kresse, The Perdew–Burke–Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set, J. Chem. Phys. 122(23), 234102 (2005)
CrossRef ADS Google scholar
[46]
D. R. Hamann, M. Schlüter, and C. Chiang, Normconserving pseudopotentials, Phys. Rev. Lett. 43(20), 1494 (1979)
CrossRef ADS Google scholar
[47]
J. P. Perdew and W. Yue, Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation, Phys. Rev. B 33(12), 8800 (1986)
CrossRef ADS Google scholar
[48]
J. A. Pople, P. M. Gill, and B. G. Johnson, Kohn–Sham density-functional theory within a finite basis set, Chem. Phys. Lett. 199(6), 557 (1992)
CrossRef ADS Google scholar
[49]
J. White and D. Bird, Implementation of gradientcorrected exchange-correlation potentials in Car- Parrinello total-energy calculations, Phys. Rev. B 50(7), 4954 (1994)
CrossRef ADS Google scholar
[50]
U. Barth and L. Hedin, A local exchange-correlation potential for the spin polarized case (i), J. Phys. C 5(13), 1629 (1972)
[51]
In this case, rather than summing equations (21) and (24), we subtract one from the other.
[52]
H. Eschrig and W. Pickett, Density functional theory of magnetic systems revisited, Solid State Commun. 118(3), 123 (2001)
CrossRef ADS Google scholar
[53]
N. I. Gidopoulos, Potential in spin-density-functional theory of noncollinear magnetism determined by the manyelectron ground state, Phys. Rev. B 75(13), 134408 (2007)
CrossRef ADS Google scholar
[54]
S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. Probert, K. Refson, and M. C. Payne, First principles methods using CASTEP, Z. Kristallogr. Cryst. Mater. 220(5/6), 567 (2005)
CrossRef ADS Google scholar
[55]
P. Hasnip and M. Probert, Auxiliary density functionals: A new class of methods for efficient, stable density functional theory calculations, arXiv: 1503.01420 (2015)
[56]
M. G. Medvedev, I. S. Bushmarinov, J. Sun, J. P. Perdew, and K. A. Lyssenko, Density functional theory is straying from the path toward the exact functional, Science 355(6320), 49 (2017)
CrossRef ADS Google scholar
[57]
E. Sim, S. Song, and K. Burke, Quantifying density errors in DFT, arXiv: 1809.10347 (2018)
[58]
D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B 41(11), 7892 (1990)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(866 KB)

Accesses

Citations

Detail

Sections
Recommended

/