Physical properties of quaternary compounds Gd2CoAl4T2 (T= Si, Ge) single crystals

Kaijian Huang, Yuanshuai Sun, Shanshan Sun, Xiao Zhang, Hechang Lei

PDF(5107 KB)
PDF(5107 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (2) : 23502. DOI: 10.1007/s11467-018-0870-3
LETTER
LETTER

Physical properties of quaternary compounds Gd2CoAl4T2 (T= Si, Ge) single crystals

Author information +
History +

Abstract

We have synthesized and investigated physical properties of two new quaternary compounds Gd2CoAl4T2 (T= Si, Ge) single crystals, which are isostructural to Tb2NiAl4Ge2 and Er2CoAl4Ge2. The most important structural feature of these materials is the anti-CaF2-type CoAl4T2 slabs. These materials show metallic behavior below 300 K and there is a long-range antiferromagnetic (AFM) transition appearing at 20 and 27 K for Gd2CoAl4Ge2 and Gd2CoAl4Si2, respectively. Resistivity and heat capacity measurements also confirm these bulk AFM transitions. Further analysis indicates that this long-range antiferromagnetism should result from the magnetic interaction between local moments of Gd3+ ions.

Keywords

magnetic materials / rare earth compounds / single crystal growth

Cite this article

Download citation ▾
Kaijian Huang, Yuanshuai Sun, Shanshan Sun, Xiao Zhang, Hechang Lei. Physical properties of quaternary compounds Gd2CoAl4T2 (T= Si, Ge) single crystals. Front. Phys., 2019, 14(2): 23502 https://doi.org/10.1007/s11467-018-0870-3

References

[1]
P. C. Canfield and Z. Fisk, Growth of single crystals from metallic fluxes, Philos. Mag. B 65, 1117 (1992)
CrossRef ADS Google scholar
[2]
M. G. Kanatzidis, R. Pöttgen, and W. Jeitschko, The metal flux: A preparative tool for the exploration of intermetallic compounds, Angew. Chem. Int. Ed. 44(43), 6996 (2005)
CrossRef ADS Google scholar
[3]
S. Okada, Y. Yu, T. Lundström, K. Kudou, and T. Tanaka, Crystal growth and some properties of LuB4, LuAlB4, and Lu2AlB6, Jpn. J. Appl. Phys. 35(Part 1, No. 9A), 4718 (1996)
[4]
S. Okada, K. Kudou, K. Iizumi, K. Kudaka, I. Higashi, and T. Lundström, Single-crystal growth and properties of CrB, Cr3B4, Cr2B3 and CrB2 from high-temperature aluminum solutions, J. Cryst. Growth 166(1–4), 429 (1996)
CrossRef ADS Google scholar
[5]
B. Sieve, X. Z. Chen, J. A. Cowen, P. Larson, S. D. Mahanti, and M. G. Kanatzidis, Multinary intermetallics from molten Al. Synthesis of SmNiAl4Ge2 and YNiAl4Ge2. Possible spin frustration in separated triangular Sm3+ layers, Chem. Mater. 11(9), 2451 (1999)
CrossRef ADS Google scholar
[6]
X. Z. Chen, S. Sportouch, B. Sieve, P. Brazis, C. R. Kannewurf, J. A. Cowen, R. Patschke, and M. G. Kanatzidis, Exploratory synthesis with molten aluminum as a solvent and routes to multinary aluminum silicides. Sm2Ni(NixSi1–x)Al4Si6 (x= 0.18–0.27): A new silicide with a ferromagnetic transition at 17.5 K, Chem. Mater. 10(10), 3202 (1998)
CrossRef ADS Google scholar
[7]
B. Sieve, X. Z. Chen, R. Henning, P. Brazis, C. R. Kannewurf, J. A. Schultz, and M. G. Kanatzidis, Cubic aluminum silicides RE8Ru12Al49Si9 (AlxSi12–x) (RE= Pr, Sm) from liquid aluminum. Empty (Si,Al)12 cuboctahedral clusters and assignment of the Al/Si distribution with neutron diffraction, J. Am. Chem. Soc. 123(29), 7040 (2001)
CrossRef ADS Google scholar
[8]
B. Sieve, P. N. Trikalitis, and M. G. Kanatzidis, Quaternary germanides formed in molten aluminum: Tb2NiAl4Ge2 and Ce2NiAl6–xGe4–y (x~0.24, y~1.34), Z. Anorg. Allg. Chem. 628(7), 1568 (2002)
CrossRef ADS Google scholar
[9]
G. Demchenko, J. Kónczyk, P. Demchenko, R. Gladyshevskii, W. Majzner, and L. Muratova, Quaternary alumogermanides in the Er-{Co,Ni}-Al-Ge systems, Chem. Met. Alloys 1, 254 (2008)
[10]
M. E. Fisher, Relation between the specific heat and susceptibility of an antiferromagnet, Philos. Mag. 7(82), 1731 (1962)
CrossRef ADS Google scholar
[11]
F. Canepa, M. Napoletano, M. L. Fornasini, and F. Merlo, Structure and magnetism of Gd2Co2Ga, Gd2Co2Al and Gd14Co3In2.7, J. Alloys Compd. 345(1–2), 42 (2002)
CrossRef ADS Google scholar
[12]
F. B. Anderson and H. B. Callen, Statistical mechanics and field-induced phase transitions of the Heisenberg antiferromagnet, Phys. Rev. 136(4A), A1068 (1964)
CrossRef ADS Google scholar
[13]
Y. Shapira and S. Foner, Magnetic phase diagram of MnF2 from ultrasonic and differential magnetization measurements, Phys. Rev. B 1(7), 3083 (1970)
CrossRef ADS Google scholar
[14]
F. Keffer and H. Chow, Dynamics of the antiferromagnetic spin-flop transition, Phys. Rev. Lett. 31(17), 1061 (1973)
CrossRef ADS Google scholar
[15]
S. N. de Medeiros, M. A. Continentino, M. T. D. Orlando, M. B. Fontes, E. M. Baggio-Saitovitch, A. Rosch, and A. Eichler, Quantum critical point in CeCo(Ge1–xSix)3, Physica B 281–282, 340 (2000)
CrossRef ADS Google scholar
[16]
M. B. Fontes, J. C. Trochez, B. Giordanengo, S. L. Budko, D. R. Sanchez, E. M. Baggio-Saitovitch, and M. A. Continentino, Electron-magnon interaction in RNiBC (R= Er, Ho, Dy, Tb, and Gd) series of compounds based on magnetoresistance measurements, Phys. Rev. B 60(9), 6781 (1999)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(5107 KB)

Accesses

Citations

Detail

Sections
Recommended

/