Enhanced robustness of zero-line modes in graphene via magnetic field
Ke Wang, Tao Hou, Yafei Ren, Zhenhua Qiao
Enhanced robustness of zero-line modes in graphene via magnetic field
We systematically studied the influence of magnetic field on zero-line modes (ZLMs) in graphene and demonstrated the physical origin of their enhanced robustness by employing nonequilibrium Green’s functions and the Landauer–Büttiker formula. We found that a perpendicular magnetic field can separate the wavefunctions of the counter-propagating kink states into opposite directions. Specifically, the separation vanishes at the charge neutrality point and increases as the Fermi level deviates from the charge neutrality point and can reach a magnitude comparable to the wavefunction spread at a moderate field strength. Such spatial separation of oppositely propagating ZLMs effectively suppresses backscattering and is more significant under zigzag boundary condition than under armchair boundary condition. Moreover, the presence of magnetic field enlarges the bulk gap and suppresses the bound states, thereby further reducing the scattering. These mechanisms effectively increase the mean free paths of the ZLMs to approximately 1 μm in the presence of a disorder.
graphene / topological state / zero-line state / electronic transport
[1] |
M. Bttiker, Edge-state physics without magnetic fields, Science 325(5938), 278 (2009)
CrossRef
ADS
Google scholar
|
[2] |
G. W. Semenoff, V. Semenoff, and F. Zhou, Domain walls in gapped graphene, Phys. Rev. Lett. 101(8), 087204 (2008)
CrossRef
ADS
Google scholar
|
[3] |
I. Martin, M. Blanter, and A. F. Morpurgo, Topological confinement in bilayer graphene, Phys. Rev. Lett. 100(3), 036804 (2008)
CrossRef
ADS
Google scholar
|
[4] |
W. Yao, S. A. Yang, and Q. Niu, Edge states in graphene: From gapped flat-band to gapless chiral modes, Phys. Rev. Lett. 102(9), 096801 (2009)
CrossRef
ADS
Google scholar
|
[5] |
M. Killi, S. Wu, and A. Paramekanti, Band structures of bilayer graphene superlattices, Phys. Rev. Lett. 107(8), 086801 (2011)
CrossRef
ADS
Google scholar
|
[6] |
Y. Ran, Y. Zhang, and A. Vishwanath, One-dimensional topologically protected modes in topological insulators with lattice dislocations, Nat. Phys. 5(4), 298 (2009)
|
[7] |
Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of quantum Hall effect and Berry’s phase in graphene, Nature 438, 201 (2005)
CrossRef
ADS
Google scholar
|
[8] |
K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, Room-temperature quantum Hall effect in graphene, Science 315(5817), 1379 (2007)
CrossRef
ADS
Google scholar
|
[9] |
C. Z. Chang, J. S. Zhang, X. Feng, J. Shen, Z. C. Zhang, M. H. Guo, K. Li, Y. B. Ou, P. Wei, L. L. Wang, Z. Q. Ji, Y. Feng, S. K. Ji, X. Chen, J. F. Jia, X. Dai, Z. Fang, S. C. Zhang, K. He, Y. Y. Wang, L. Lu, X. C. Ma, and Q. K. Xue, Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator, Science 340(6129), 167 (2013)
CrossRef
ADS
Google scholar
|
[10] |
Z. Qiao, S. A. Yang, W. Feng, W. K. Tse, J. Ding, Y. Yao, J. Wang, and Q. Niu, Quantum anomalous Hall effect in graphene from Rashba and exchange effects, Phys. Rev. B 82(16), 161414R (2010)
CrossRef
ADS
Google scholar
|
[11] |
L. Sheng, D. N. Sheng, and C. S. Ting, Spin-Hall effect in two-dimensional electron systems with Rashba spin-orbit coupling and disorder, Phys. Rev. Lett. 94(1), 016602 (2005)
CrossRef
ADS
Google scholar
|
[12] |
Z. H. Qiao, J. Jung, Q. Niu, and A. H. MacDonald, Electronic highways in bilayer graphene, Nano Lett. 11(8), 3453 (2011)
CrossRef
ADS
Google scholar
|
[13] |
T. Hou, G. H. Chen, W. K. Tse, C. G. Zeng, and Z. H. Qiao, Topological zero-line modes in folded bilayer graphene, arXiv: 1809.04036 (2018)
|
[14] |
K. Wang, Y. F. Ren, X. Z. Deng, S. A. Yang, J. Jung, and Z. H. Qiao, Gate-tunable current partition in graphenebased topological zero lines, Phys. Rev. B 95(24), 245420 (2017)
CrossRef
ADS
Google scholar
|
[15] |
Z. H. Qiao, J. Jung, C. Lin, Y. F. Ren, A. H. MacDonald, and Q. Niu, Current partition at topological channel intersections, Phys. Rev. Lett. 112(20), 206601 (2014)
CrossRef
ADS
Google scholar
|
[16] |
J. Li, K. Wang, K. J. McFaul, Z. Zern, Y. F. Ren, K. Watanabe, T. Taniguchi, Z. H. Qiao, and J. Zhu, Gate-controlled topological conducting channels in bilayer graphene, Nat. Nanotechnol. 11, 1060 (2016)
CrossRef
ADS
Google scholar
|
[17] |
M. Kim, J. H. Choi, S. H. Lee, K. Watanabe, T. Taniguchi, S. H. Jhi, and H. J. Lee, Valley-symmetrypreserved transport in ballistic graphene with gatedefined carrier guiding, Nat. Phys. 12(11), 1022 (2016)
|
[18] |
L. Ju, Z. Shi, N. Nair, Y. Lv, C. Jin, H. A. Velasco, M. C. Bechtel, A. Martin, J. Zettl, Analytis, and F. Wang, Topological valley transport at bilayer graphene domain walls, Nature 520(7549), 650 (2015)
CrossRef
ADS
Google scholar
|
[19] |
S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge University Press, 1997
|
[20] |
M. P. L. Sancho, J. M. L. Sancho, and J. Rubio, Quick iterative scheme for the calculation of transfer matrices: Application to Mo(100), J. Phys. F Met. Phys. 14(5), 1205 (1984)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |