Finite temperature physics of 1D topological Kondo insulator: Stable Haldane phase, emergent energy scale and beyond

Yin Zhong, Qin Wang, Yu Liu, Hai-Feng Song, Ke Liu, Hong-Gang Luo

PDF(1075 KB)
PDF(1075 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (2) : 23602. DOI: 10.1007/s11467-018-0868-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Finite temperature physics of 1D topological Kondo insulator: Stable Haldane phase, emergent energy scale and beyond

Author information +
History +

Abstract

In recent years, interacting topological insulators have emerged as new frontiers in condensed matter physics, and the hotly studied topological Kondo insulator (TKI) is one of such prototypes. Although its zero-temperature ground-state has been widely investigated, the finite temperature physics on TKI is largely unknown. Here, we explore the finite temperature properties in a simplified model for TKI, namely the one-dimensional p-wave periodic Anderson model, with numerically exact determinant quantum Monte Carlo simulation. It is found that the topological Haldane phase established for groundstate is still stable against small thermal fluctuation and its characteristic edge magnetization develops at low temperature. Such facts emphasize the robustness of (symmetry-protected) topological order against temperature effect, which always exists at real physical world. Moreover, we use the saturated low-T spin structure factor and the 1T-law of susceptibility to detect the free edge spin moment, interestingly the low-temperature upturn behavior of the latter one is similar to experimental finding in SmB6 at T<50 K. It implies that similar physical mechanism may work both for idealized models and realistic correlated electron materials. We have also identified an emergent energy scale Tcr, which signals a crossover into interesting low-T regime and seems to be the expected Ruderman–Kittel–Kasuya–Yosida coupling. Finally, the collective Kondo screening effect has been examined and it is heavily reduced at boundary, which may give a fruitful playground for novel physics beyond the wellestablished Haldane phase and topological band insulators.

Keywords

topological Kondo insulator / heavy fermion / quantum Monte Carlo / Haldane phase

Cite this article

Download citation ▾
Yin Zhong, Qin Wang, Yu Liu, Hai-Feng Song, Ke Liu, Hong-Gang Luo. Finite temperature physics of 1D topological Kondo insulator: Stable Haldane phase, emergent energy scale and beyond. Front. Phys., 2019, 14(2): 23602 https://doi.org/10.1007/s11467-018-0868-x

References

[1]
M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
CrossRef ADS Google scholar
[2]
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
CrossRef ADS Google scholar
[3]
M. Hohenadler and F. F. Assaad, Correlation effects in two-dimensional topological insulators, J. Phys. Condens. Matter 25(14), 143201 (2013)
CrossRef ADS Google scholar
[4]
A. Bansil, H. Lin, and T. Das, Topological band theory, Rev. Mod. Phys. 88(2), 021004 (2016)
CrossRef ADS Google scholar
[5]
E. Witten, Fermion path integrals and topological phases, Rev. Mod. Phys. 88(3), 035001 (2016)
CrossRef ADS Google scholar
[6]
C. K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Classification of topological quantum matter with symmetries, Rev. Mod. Phys. 88(3), 035005 (2016)
CrossRef ADS Google scholar
[7]
T. Senthil, Symmetry-protected topological phases of quantum matter, Annu. Rev. Condens. Matter Phys. 6(1), 299 (2015)
CrossRef ADS Google scholar
[8]
C. X. Liu, S. C. Zhang, and X. L. Qi, The quantum anomalous Hall effect: Theory and experiment, Annu. Rev. Condens. Matter Phys. 7(1), 301 (2016)
CrossRef ADS Google scholar
[9]
M. Dzero, J. Xia, V. Galitski, and P. Coleman, Topological Kondo insulators, Annu. Rev. Condens. Matter Phys. 7(1), 249 (2016)
CrossRef ADS Google scholar
[10]
M. Dzero, K. Sun, V. Galitski, and P. Coleman, Topological Kondo insulators, Phys. Rev. Lett. 104(10), 106408 (2010)
CrossRef ADS Google scholar
[11]
J. Jiang, S. Li, T. Zhang, Z. Sun, F. Chen, Z. R. Ye, M. Xu, Q. Q. Ge, S. Y. Tan, X. H. Niu, M. Xia, B. P. Xie, Y. F. Li, X. H. Chen, H. H. Wen, and D. L. Feng, Observation of possible topological in-gap surface states in the Kondo insulator SmB6 by photoemission, Nat. Commun. 4(1), 3010 (2013)
CrossRef ADS Google scholar
[12]
M. Neupane, N. Alidoust, S. Y. Xu, T. Kondo, Y. Ishida, D. J. Kim, C. Liu, I. Belopolski, Y. J. Jo, T. R. Chang, H. T. Jeng, T. Durakiewicz, L. Balicas, H. Lin, A. Bansil, S. Shin, Z. Fisk, and M. Z. Hasan, Surface electronic structure of the topological Kondo-insulator candidate correlated electron system SmB6, Nat. Commun. 4(1), 2991 (2013)
CrossRef ADS Google scholar
[13]
V. Alexandrov, P. Coleman, and O. Erten, Kondo Breakdown in Topological Kondo Insulators, Phys. Rev. Lett. 114(17), 177202 (2015)
CrossRef ADS Google scholar
[14]
B. S. Tan, Y. T. Hsu, B. Zeng, M. C. Hatnean, N. Harrison, Z. Zhu, M. Hartstein, M. Kiourlappou, A. Srivastava, M. D. Johannes, T. P. Murphy, J. H. Park, L. Balicas, G. G. Lonzarich, G. Balakrishnan, and S. E. Sebastian, Unconventional Fermi surface in an insulating state, Science 349(6245), 287 (2015)
CrossRef ADS Google scholar
[15]
G. Baskaran, Majorana Fermi sea in insulating SmB6: A proposal and a theory of quantum oscillations in Kondo insulators, arXiv: 1507.03477
[16]
O. Erten, P. Y. Chang, P. Coleman, and A. M. Tsvelik, Skyrme Insulators: Insulators at the Brink of Superconductivity, Phys. Rev. Lett. 119(5), 057603 (2017)
CrossRef ADS Google scholar
[17]
A. Thomson and S. Sachdev, Fractionalized Fermi liquid on the surface of a topological Kondo insulator, Phys. Rev. B 93(12), 125103 (2016)
CrossRef ADS Google scholar
[18]
O. Erten, P. Ghaemi, and P. Coleman, Kondo breakdown and quantum oscillations in SmB6, Phys. Rev. Lett. 116(4), 046403 (2016)
CrossRef ADS Google scholar
[19]
D. Chowdhury, I. Sodemann, and T. Senthil, Mixedvalence insulators with neutral Fermi surfaces, Nat. Commun. 9(1), 1766 (2018)
CrossRef ADS Google scholar
[20]
I. Sodemann, D. Chowdhury, and T. Senthil, Quantum oscillations in insulators with neutral Fermi surfaces, Phys. Rev. B 97(4), 045152 (2018)
CrossRef ADS Google scholar
[21]
Y. Zhong, Y. Liu, and H.-G. Luo, Topological phase in 1D topological Kondo insulator: Z2 topological insulator, Haldane-like phase and Kondo breakdown, Eur. Phys. J. B 90, 147 (2017)
CrossRef ADS Google scholar
[22]
F. T. Lisandrini, A. M. Lobos, A. O. Dobry, and C. J. Gazza, Topological Kondo insulators in one dimension: Continuous Haldane-type ground-state evolution from the strongly interacting to the noninteracting limit, Phys. Rev. B 96(7), 075124 (2017)
CrossRef ADS Google scholar
[23]
X. G. Wen, Zoo of quantum-topological phases of matter, Rev. Mod. Phys. 89(4), 041004 (2017)
CrossRef ADS Google scholar
[24]
Y. F. Yang, Two-fluid model for heavy electron physics, Rep. Prog. Phys. 79(7), 074501 (2016)
CrossRef ADS Google scholar
[25]
R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Monte Carlo calculations of coupled boson-fermion systems (I), Phys. Rev. D 24(8), 2278 (1981)
CrossRef ADS Google scholar
[26]
J. E. Hirsch, Two-dimensional Hubbard model: Numerical simulation study, Phys. Rev. B 31(7), 4403 (1985)
CrossRef ADS Google scholar
[27]
R. R. dos Santo, Introduction to quantum Monte Carlo simulations for fermionic systems, Braz. J. Phys. 33, 1 (2003)
CrossRef ADS Google scholar
[28]
M. Vekić, J. W. Cannon, D. J. Scalapino, R. T. Scalettar, and R. L. Sugar, Competition between Antiferromagnetic Order and Spin-Liquid Behavior in the Two-Dimensional Periodic Anderson Model at Half Filling, Phys. Rev. Lett. 74(12), 2367 (1995)
CrossRef ADS Google scholar
[29]
M. Jiang, N. J. Curro, and R. T. Scalettar, Universal Knight shift anomaly in the periodic Anderson model, Phys. Rev. B 90(24), 241109(R) (2014)
[30]
H. F. Lin, H. S. Tao, W. X. Guo, and W. M. Liu, Antiferromagnetism and Kondo screening on a honeycomb lattice, Chin. Phys. B 24(5), 057101 (2015)
CrossRef ADS Google scholar
[31]
W. Hu, R. T. Scalettar, E. W. Huang, and B. Moritz, Effects of an additional conduction band on the singletantiferromagnet competition in the periodic Anderson model, Phys. Rev. B 95(23), 235122 (2017)
CrossRef ADS Google scholar
[32]
J. Gubernatis, N. Kawashima, and P. Werner, Quantum Monte Carlo Methods: Algorithms for Lattice Models, Cambridge University Press, 2016
CrossRef ADS Google scholar
[33]
T. Paiva, G. Esirgen, R. T. Scalettar, C. Huscroft, and A. K. McMahan, Doping-dependent study of the periodic Anderson model in three dimensions, Phys. Rev. B 68(19), 195111 (2003)
CrossRef ADS Google scholar
[34]
H. L. Nourse, I. P. McCulloch, C. Janani, and B. J. Powell, Haldane insulator protected by reflection symmetry in the doped Hubbard model on the three-legged ladder, Phys. Rev. B 94(21), 214418 (2016)
CrossRef ADS Google scholar
[35]
A. M. Lobos, A. O. Dobry, and V. Galitski, Magnetic end states in a strongly interacting one-dimensional topological Kondo Insulator, Phys. Rev. X 5(2), 021017 (2015)
CrossRef ADS Google scholar
[36]
A. Mezio, A. M. Lobos, A. O. Dobry, and C. J. Gazza, Haldane phase in one-dimensional topological Kondo insulators, Phys. Rev. B 92(20), 205128 (2015)
CrossRef ADS Google scholar
[37]
I. Hagymási and O. Legeza, Characterization of a correlated topological Kondo insulator in one dimension, Phys. Rev. B 93(16), 165104 (2016)
CrossRef ADS Google scholar
[38]
J. C. Nickerson, R. M. White, K. N. Lee, R. Bachmann, R. Geballe, and G. W. Hull, Physical properties of SmB6, Phys. Rev. B 3(6), 2030 (1971)
CrossRef ADS Google scholar
[39]
P. Coleman, Introduction to Many Body Physics, Chapters 15 to 18, Cambridge University Press, 2015
CrossRef ADS Google scholar
[40]
K. Kummer, S. Patil, A. Chikina, M. Güttler, M. Höppner, et al., Temperature-independent Fermi surface in the Kondo lattice YbRh2Si2, Phys. Rev. X 5(1), 011028 (2015)
CrossRef ADS Google scholar
[41]
Q. Y. Chen, D. F. Xu, X. H. Niu, J. Jiang, R. Peng, et al., Direct observation of how the heavy-fermion state develops in CeCoIn5, Phys. Rev. B 96(4), 045107 (2017)
CrossRef ADS Google scholar
[42]
E. Abrahams, J. Schmalian, and P. Wölfle, Strongcoupling theory of heavy-fermion criticality, Phys. Rev. B 90(4), 045105 (2014)
CrossRef ADS Google scholar
[43]
V. R. Shaginyan, A. Z. Msezane, G. S. Japaridze, K. G. Popov, and V. A. Khodel, Strongly correlated Fermi systems as a new state of matter, Front. Phys. 11(5), 117103 (2016)
CrossRef ADS Google scholar
[44]
Q. Si, S. Rabello, K. Ingersent, and J. L. Smith, Locally critical quantum phase transitions in strongly correlated metals, Nature 413(6858), 804 (2001)
CrossRef ADS Google scholar
[45]
T. Senthil, M. Vojta, and S. Sachdev, Weak magnetism and non-Fermi liquids near heavy-fermion critical points, Phys. Rev. B 69(3), 035111 (2004)
CrossRef ADS Google scholar
[46]
I. Paul, C. Pépin, and M. R. Norman, Kondo Breakdown and Hybridization Fluctuations in the Kondo-Heisenberg Lattice, Phys. Rev. Lett. 98(2), 026402 (2007)
CrossRef ADS Google scholar
[47]
Y. Zhong, K. Liu, Y. Q. Wang, and H. G. Luo, Alternative Kondo breakdown mechanism: Orbital-selective orthogonal metal transition, Phys. Rev. B Condens. Matter Mater. Phys. 86(11), 115113 (2012)
CrossRef ADS Google scholar
[48]
M. Hartstein, W. H. Toews, Y. T. Hsu, B. Zeng, X. Chen, et al., Fermi surface in the absence of a Fermi liquid in the Kondo insulator SmB6, Nat. Phys. 14(2), 166 (2017)
[49]
Y. Zhong, Y. Liu, and H. G. Luo, Simulating heavy fermion physics in optical lattice: Periodic Anderson model with harmonic trapping potential, Front. Phys. 12(5), 127502 (2017)
CrossRef ADS Google scholar
[50]
R. C. Caro, R. Franco, and J. Silva-Valencia, Spin-liquid state in an inhomogeneous periodic Anderson model, Phys. Rev. A 97(2), 023630 (2018)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1075 KB)

Accesses

Citations

Detail

Sections
Recommended

/