Stacking transition in rhombohedral graphite

Tataiana Latychevskaia, Seok-Kyun Son, Yaping Yang, Dale Chancellor, Michael Brown, Servet Ozdemir, Ivan Madan, Gabriele Berruto, Fabrizio Carbone, Artem Mishchenko, Kostya S. Novoselov

PDF(11234 KB)
PDF(11234 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (1) : 13608. DOI: 10.1007/s11467-018-0867-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Stacking transition in rhombohedral graphite

Author information +
History +

Abstract

Few-layer graphene (FLG) has recently been intensively investigated for its variable electronic properties, which are defined by a local atomic arrangement. While the most natural arrangement of layers in FLG is ABA (Bernal) stacking, a metastable ABC (rhombohedral) stacking, characterized by a relatively high-energy barrier, can also occur. When both types of stacking occur in one FLG device, the arrangement results in an in-plane heterostructure with a domain wall (DW). In this paper, we present two approaches to demonstrate that the ABC stacking in FLG can be controllably and locally turned into the ABA stacking. In the first approach, we introduced Joule heating, and the transition was characterized by 2D peak Raman spectra at a submicron spatial resolution. The transition was initiated in a small region, and then the DW was controllably shifted until the entire device became ABA stacked. In the second approach, the transition was achieved by illuminating the ABC region with a train of 790-nm-wavelength laser pulses, and the transition was visualized by transmission electron microscopy in both diffraction and dark-field imaging modes. Further, using this approach, the DW was visualized at a nanoscale spatial resolution in the dark-field imaging mode.

Keywords

graphene / graphite / van der Waals heterostructures / domain wall / Raman spectroscopy / transmission electron microscopy / electron diffraction / structural transition

Cite this article

Download citation ▾
Tataiana Latychevskaia, Seok-Kyun Son, Yaping Yang, Dale Chancellor, Michael Brown, Servet Ozdemir, Ivan Madan, Gabriele Berruto, Fabrizio Carbone, Artem Mishchenko, Kostya S. Novoselov. Stacking transition in rhombohedral graphite. Front. Phys., 2019, 14(1): 13608 https://doi.org/10.1007/s11467-018-0867-y

References

[1]
J. D. Bernal, The structure of graphite, Proc. R. Soc. Lond. Ser. A 106, 749 (1924)
[2]
F. Laves and Y. Baskin, On the formation of the rhombohedral graphite modification, Z. Kristallogr. Cryst. Mater. 107(5–6), 337 (1956)
CrossRef ADS Google scholar
[3]
H. A. Wilhelm, B. Croset, and G. Medjahdi, Proportion and dispersion of rhombohedral sequences in the hexagonal structure of graphite powders, Carbon 45(12), 2356 (2007)
CrossRef ADS Google scholar
[4]
C. H. Lui, Z. Q. Li, Z. Y. Chen, P. V. Klimov, L. E. Brus, and T. F. Heinz, Imaging stacking order in fewlayer graphene, Nano Lett. 11(1), 164 (2011)
CrossRef ADS Google scholar
[5]
A. Torche, F. Mauri, J. C. Charlier, and M. Calandra, First-principles determination of the Raman fingerprint of rhombohedral graphite, Phys. Rev. Mater. 1(4), 041001 (2017)
CrossRef ADS Google scholar
[6]
M. Koshino, Interlayer screening effect in graphene multilayers with ABA and ABC stacking, Phys. Rev. B 81(12), 125304 (2010)
CrossRef ADS Google scholar
[7]
R. J. Xiao, F. Tasnadi, K. Koepernik, J. W. F. Venderbos, M. Richter, and M. Taut, Density functional investigation of rhombohedral stacks of graphene: Topological surface states, nonlinear dielectric response, and bulk limit, Phys. Rev. B 84(16), 165404 (2011)
CrossRef ADS Google scholar
[8]
K. Sugawara, N. Yamamura, K. Matsuda, W. Norimatsu, M. Kusunoki, T. Sato, and T. Takahashi, Selective fabrication of free-standing ABA and ABC trilayer graphene with/without Dirac-cone energy bands, NPG Asia Mater. 10(2), e466 (2018)
CrossRef ADS Google scholar
[9]
M. F. Craciun, S. Russo, M. Yamamoto, J. B. Oostinga, A. F. Morpurgo, and S. Tarucha, Trilayer graphene is a semimetal with a gate-tunable band overlap, Nat. Nanotechnol. 4(6), 383 (2009)
CrossRef ADS Google scholar
[10]
M. Aoki and H. Amawashi, Dependence of band structures on stacking and field in layered graphene, Solid State Commun. 142(3), 123 (2007)
CrossRef ADS Google scholar
[11]
C. H. Lui, Z. Q. Li, K. F. Mak, E. Cappelluti, and T. F. Heinz, Observation of an electrically tunable band gap in trilayer graphene, Nat. Phys. 7(12), 944 (2011)
[12]
W. Bao, L. Jing, J. Velasco, Y. Lee, G. Liu, D. Tran, B. Standley, M. Aykol, S. B. Cronin, D. Smirnov, M. Koshino, E. McCann, M. Bockrath, and C. N. Lau, Stacking-dependent band gap and quantum transport in trilayer graphene, Nat. Phys. 7(12), 948 (2011)
[13]
P. San-Jose, R. V. Gorbachev, A. K. Geim, K. S. Novoselov, and F. Guinea, Stacking boundaries and transport in bilayer graphene, Nano Lett. 14(4), 2052 (2014)
CrossRef ADS Google scholar
[14]
L. Ju, Z. Shi, N. Nair, Y. Lv, C. Jin, J. Velasco, C. Ojeda-Aristizabal, H. A. Bechtel, M. C. Martin, A. Zettl, J. Analytis, and F. Wang, Topological valley transport at bilayer graphene domain walls, Nature 520(7549), 650 (2015)
CrossRef ADS Google scholar
[15]
I. Martin, Y. M. Blanter, and A. F. Morpurgo, Topological confinement in bilayer graphene, Phys. Rev. Lett. 100(3), 036804 (2008)
CrossRef ADS Google scholar
[16]
G. W. Semenoff, V. Semenoff, and F. Zhou, Domain walls in gapped graphene, Phys. Rev. Lett. 101(8), 087204 (2008)
CrossRef ADS Google scholar
[17]
L. L. Jiang, Z. Shi, B. Zeng, S. Wang, J. H. Kang, T. Joshi, C. Jin, L. Ju, J. Kim, T. Lyu, Y. R. Shen, M. Crommie, H. J. Gao, and F. Wang, Soliton-dependent plasmon reflection at bilayer graphene domain walls, Nat. Mater. 15(8), 840 (2016)
CrossRef ADS Google scholar
[18]
L. J. Yin, W. X. Wang, Y. Zhang, Y. Y. Ou, H. T. Zhang, C. Y. Shen, and L. He, Observation of chirality transition of quasiparticles at stacking solitons in trilayer graphene, Phys. Rev. B 95, 081402 (2017)
CrossRef ADS Google scholar
[19]
L. L. Jiang, S. Wang, Z. Shi, C. Jin, M. I. B. Utama, S. Zhao, Y. R. Shen, H. J. Gao, G. Zhang, and F. Wang, Manipulation of domain-wall solitons in bi- and trilayer graphene, Nat. Nanotechnol. 13(3), 204 (2018)
CrossRef ADS Google scholar
[20]
L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, One-dimensional electrical contact to a two-dimensional material, Science 342(6158), 614 (2013)
CrossRef ADS Google scholar
[21]
A. Mishchenko, J. S. Tu, Y. Cao, R. V. Gorbachev, J. R. Wallbank, M. T. Greenaway, V. E. Morozov, S. V. Morozov, M. J. Zhu, S. L. Wong, F. Withers, C. R. Woods, Y. J. Kim, K. Watanabe, T. Taniguchi, E. E. Vdovin, O. Makarovsky, T. M. Fromhold, V. I. Fal’ko, A. K. Geim, L. Eaves, and K. S. Novoselov, Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures, Nat. Nanotechnol. 9(10), 808 (2014)
CrossRef ADS Google scholar
[22]
S. K. Son, M. Šiškins, C. Mullan, J. Yin, V. G. Kravets, A. Kozikov, S. Ozdemir, M. Alhazmi, M. Holwill, K. Watanabe, T. Taniguchi, D. Ghazaryan, K. S. Novoselov, V. I. Fal’ko, and A. Mishchenko, Graphene hot-electron light bulb: incandescence from hBN-encapsulated graphene in air, 2D Materials 5, 011006 (2018)
[23]
W. Zhang, J. Yan, C. H. Chen, L. Lei, J. L. Kuo, Z. Shen, and L. J. Li, Molecular adsorption induces the transformation of rhombohedral- to Bernal-stacking order in trilayer graphene, Nat. Commun. 4(1), 2074 (2013)
CrossRef ADS Google scholar
[24]
S. Berciaud, M. Y. Han, K. F. Mak, L. E. Brus, P. Kim, and T. F. Heinz, Electron and optical phonon temperatures in electrically biased graphene, Phys. Rev. Lett. 104(22), 227401 (2010)
CrossRef ADS Google scholar
[25]
C. S. G. Cousins, Elasticity of carbon allotropes. IV. Rhombohedral graphite: Elasticity, zone-center optic modes, and phase transformation using transferred Keating parameters, Phys. Rev. B 67(2), 024110 (2003)
CrossRef ADS Google scholar
[26]
L. Piazza, D. J. Masiel, T. LaGrange, B. W. Reed, B. Barwick, and F. Carbone, Design and implementation of a fs-resolved transmission electron microscope based on thermionic gun technology, Chem. Phys. 423, 79 (2013)
CrossRef ADS Google scholar
[27]
G. Berruto, I. Madan, Y. Murooka, G. M. Vanacore, E. Pomarico, J. Rajeswari, R. Lamb, P. Huang, A. J. Kruchkov, Y. Togawa, T. LaGrange, D. McGrouther, H. M. Rønnow, and F. Carbone, Laser-induced skyrmion writing and erasing in an ultrafast Cryo–Lorentz transmission electron microscope, Phys. Rev. Lett. 120(11), 117201 (2018)
CrossRef ADS Google scholar
[28]
J. B. Hu, G. M. Vanacore, A. Cepellotti, N. Marzari, and A. H. Zewail, Rippling ultrafast dynamics of suspended 2D monolayers, graphene, Proc. Natl. Acad. Sci. USA 113(43), E6555 (2016)
CrossRef ADS Google scholar
[29]
S. Fahy, S. G. Louie, and M. L. Cohen, Pseudopotential total-energy study of the transition from rhombohedral graphite to diamond, Phys. Rev. B 34(2), 1191 (1986)
CrossRef ADS Google scholar
[30]
F. Isobe, H. Ohfuji, H. Sumiya, and T. Irifune, Nanolayered diamond sintered compact obtainedby direct conversion from highly oriented graphite under high pressure and high temperature, J. Nanomater. 2013, 380165 (2013)
CrossRef ADS Google scholar
[31]
R. K. Raman, Y. Murooka, C. Y. Ruan, T. Yang, S. Berber, and D. Tomanek, Direct observation of optically induced transient structures in graphite using ultrafast electron crystallography, Phys. Rev. Lett. 101(7), 077401 (2008)
CrossRef ADS Google scholar
[32]
F. Carbone, O. H. Kwon, and A. H. Zewail, Dynamics of chemical bonding mapped by energy-resolved 4D electron microscopy, Science 325(5937), 181 (2009)
CrossRef ADS Google scholar
[33]
R. Nuske, A. Jurgilaitis, H. Enquist, M. Harb, Y. Fang, U. Hakanson, and J. Larsson, Transforming graphite to nanoscale diamonds by a femtosecond laser pulse, Appl. Phys. Lett. 100(4), 043102 (2012)
CrossRef ADS Google scholar
[34]
S. A. Solin and A. K. Ramdas, Raman spectrum of diamond, Phys. Rev. B 1(4), 1687 (1970)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(11234 KB)

Accesses

Citations

Detail

Sections
Recommended

/