Logic Bell state concentration with parity check measurement
Jiu Liu, Lan Zhou, Wei Zhong, Yu-Bo Sheng
Logic Bell state concentration with parity check measurement
Logic qubit plays an important role in current quantum communication. In this paper, we propose an efficient entanglement concentration protocol (ECP) for a new kind of logic Bell state, where the logic qubit is the concatenated Greenber–Horne–Zeilinger (C-GHZ) state. Our ECP relies on the nondemolition polarization parity check (PPC) gates constructed with cross-Kerr nonlinearity, and can distill one pair of maximally entangled logic Bell state from two same pairs of less-entangled logic Bell states. Benefit from the nondemolition PPC gates, the concentrated maximally entangled logic Bell state can be remained for further application. Moreover, our ECP can be repeated to further concentrate the less-entangled logic Bell state. By repeating the ECP, the total success probability can be effectively increased. Based on above features, this ECP may be useful in future long-distance quantum communication.
concatenated Greenber–Horne–Zeilinger (C-GHZ) state / single photon / cross-Kerr nonlinearity
[1] |
E. Knill, R. Laflamme, and G. J. Milburn, A scheme for efficient quantum computation with linear optics, Nature 409(6816), 46 (2001)
CrossRef
ADS
Google scholar
|
[2] |
C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky– Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)
CrossRef
ADS
Google scholar
|
[3] |
T. C. Li and Z. Q. Yin, Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator, Sci. Bull. 61(2), 163 (2016)
CrossRef
ADS
Google scholar
|
[4] |
M. D. G. Ramírez, B. J. Falaye, G. H. Sun, M. Cruz-Irisson, and S. H. Dong, Quantum teleportation and information splitting via four-qubit cluster state and a Bell state, Front. Phys. 12(5), 120306 (2017)
CrossRef
ADS
Google scholar
|
[5] |
P. Y. Xiong, X. T. Yu, H. T. Zhan, and Z. C. Zhang, Multiple teleportation via partially entangled GHZ state, Front. Phys. 11(4), 110303 (2016)
CrossRef
ADS
Google scholar
|
[6] |
A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67(6), 661 (1991)
CrossRef
ADS
Google scholar
|
[7] |
D. Y. Cao, B. H. Liu, Z. Wang, Y. F. Huang, C. F. Li, and G. C. Guo, Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons, Sci. Bull. 60(12), 1128 (2015)
CrossRef
ADS
Google scholar
|
[8] |
G. L. Long and X. S. Liu, Theoretically efficient high capacity quantum-key-distribution scheme, Phys. Rev. A 65(3), 032302 (2002)
CrossRef
ADS
Google scholar
|
[9] |
F. G. Deng, G. L. Long, and X. S. Liu, Two-step quantum direct communication protocol using the Einstein– Podolsky–Rosen pair block, Phys. Rev. A 68(4), 042317 (2003)
CrossRef
ADS
Google scholar
|
[10] |
C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, Quantum secure direct communication with high dimension quantum superdense coding, Phys. Rev. A 71(4), 044305 (2005)
CrossRef
ADS
Google scholar
|
[11] |
J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, Experimental quantum secure direct communication with single photons, Light Sci. Appl. 5(9), e16144 (2016)
CrossRef
ADS
Google scholar
|
[12] |
W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, Quantum secure direct communication with quantum memory, Phys. Rev. Lett. 118(22), 220501 (2017)
CrossRef
ADS
Google scholar
|
[13] |
F. Zhu, W. Zhang, Y. B. Sheng, and Y. D. Huang, Experimental long-distance quantum secret direct communication, Sci. Bull. 62(22), 1519 (2017)
CrossRef
ADS
Google scholar
|
[14] |
Y. B. Sheng and L. Zhou, Distributed secure quantum machine learning, Sci. Bull. 62(14), 1025 (2017)
CrossRef
ADS
Google scholar
|
[15] |
X. Q. Shao, T. Y. Zheng, and S. Zhang, Engineering steady three-atom singlet states via quantum-jump based feedback, Phys. Rev. A 85(4), 042308 (2012)
CrossRef
ADS
Google scholar
|
[16] |
X. Q. Shao, T. Y. Zheng, C. H. Oh, and S. Zhang, Dissipative creation of three-dimensional entangled state in optical cavity via spontaneous emission, Phys. Rev. A 89(1), 012319 (2014)
CrossRef
ADS
Google scholar
|
[17] |
X. Q. Shao, J. B. You, T. Y. Zheng, C. H. Oh, and S. Zhang, Stationary three-dimensional entanglement via dissipative Rydberg pumping, Phys. Rev. A 89(5), 052313 (2014)
CrossRef
ADS
Google scholar
|
[18] |
T. Y. Ye, Robust quantum dialogue based on a shared auxiliary logical Bell state against collective noise, Sci. China Phys. Mech. Astron. 58, 040301 (2015)
CrossRef
ADS
Google scholar
|
[19] |
W. Huang, Q. Su, B. J. Xu, B. Liu, F. Fan, H. Y. Jia, and Y. H. Yang, Improved multiparty quantum key agreement in travelling mode, Sci. China Phys. Mech. Astron. 59(12), 120311 (2016)
CrossRef
ADS
Google scholar
|
[20] |
C. J. Liu, W. Ye, W. D. Zhou, H. L. Zhang, J. H. Huang, and L. Y. Hu, Entanglement of coherent superposition of photon-subtraction squeezed vacuum, Front. Phys. 12(5), 120307 (2017)
CrossRef
ADS
Google scholar
|
[21] |
M. Y. Wang, F. L. Yan, and T. Gao, Generation of four photon polarization entangled decoherence-free states with cross-Kerr nonlinearity, Sci. Rep. 6(1), 38233 (2016)
CrossRef
ADS
Google scholar
|
[22] |
A. Farouk, J. Batle, M. Elhoseny, M. Naseri, M. Lone, A. Fedorov, M. Alkhambashi, S. H. Ahmed, and M. Abdel-Aty, Robust general N user authentication scheme in a centralized quantum communication network via generalized GHZ states, Front. Phys. 13(2), 130306 (2018)
CrossRef
ADS
Google scholar
|
[23] |
J. Batle, A. Farouk, O. Tarawneh, and S. Abdalla, Multipartite quantum correlations among atoms in QED cavities,Front. Phys. 13(1), 130305 (2018)
CrossRef
ADS
Google scholar
|
[24] |
C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, Purification of noisy entanglement and faithful teleportation via noisy channels, Phys. Rev. Lett. 76(5), 722 (1996)
CrossRef
ADS
Google scholar
|
[25] |
W. Dür, H. J. Briegel, J. I. Cirac, and P. Zoller, Quantum repeaters based on entanglement purification, Phys. Rev. A 59(1), 169 (1999)
CrossRef
ADS
Google scholar
|
[26] |
J. W. Pan, C. Simon, Č. Brukner, and A. Zeilinger, Entanglement purification for quantum communication, Nature 410(6832), 1067 (2001)
CrossRef
ADS
Google scholar
|
[27] |
D. Gonţa and P. van Loock, High-fidelity entanglement purification using chains of atoms and optical cavities, Phys. Rev. A 86(5), 052312 (2012)
CrossRef
ADS
Google scholar
|
[28] |
M. Zwerger, H. J. Briegel, and W. Dür, Universal and optimal error thresholds for measurement-based entanglement purification, Phys. Rev. Lett. 110(26), 260503 (2013)
CrossRef
ADS
Google scholar
|
[29] |
M. Zwerger, H. J. Briegel, and W. Dür, Robustness of hashing protocols for entanglement purification, Phys. Rev. A 90(1), 012314 (2014)
CrossRef
ADS
Google scholar
|
[30] |
J. Z. Bernád, J. M. Torres, L. Kunz, and G. Alber, Multiphoton-state-assisted entanglement purification of material qubits, Phys. Rev. A 93(3), 032317 (2016)
CrossRef
ADS
Google scholar
|
[31] |
C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Concentrating partial entanglement by local operations, Phys. Rev. A 53(4), 2046 (1996)
CrossRef
ADS
Google scholar
|
[32] |
S. Bose, V. Vedral, and P. L. Knight, Purification via entanglement swapping and conserved entanglement, Phys. Rev. A 60(1), 194 (1999)
CrossRef
ADS
Google scholar
|
[33] |
T. Yamamoto, M. Koashi, and N. Imoto, Concentration and purification scheme for two partially entangled photon pairs, Phys. Rev. A 64(1), 012304 (2001)
CrossRef
ADS
Google scholar
|
[34] |
Z. Zhao, J. W. Pan, and M. S. Zhan, Practical scheme for entanglement concentration, Phys. Rev. A 64(1), 014301 (2001)
CrossRef
ADS
Google scholar
|
[35] |
Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs, Phys. Rev. A 85(1), 012307 (2012)
CrossRef
ADS
Google scholar
|
[36] |
F. G. Deng, Optimal nonlocal multipartite entanglement concentration based on projection measurements, Phys. Rev. A 85(2), 022311 (2012)
CrossRef
ADS
Google scholar
|
[37] |
Y. B. Sheng, L. Zhou, and S. M. Zhao, Efficient two-step entanglement concentration for arbitrary Wstates, Phys. Rev. A 85(4), 042302 (2012)
CrossRef
ADS
Google scholar
|
[38] |
Z. H. Peng, J. Zou, X. J. Liu, Y. J. Xiao, and L. M. Kuang, Atomic and photonic entanglement concentration via photonic Faraday rotation, Phys. Rev. A 86(3), 034305 (2012)
CrossRef
ADS
Google scholar
|
[39] |
C. Cao, C. Wang, L. Y. He, and R. Zhang, Atomic entanglement purification and concentration using coherent state input-output process in low-Qcavity QED regime, Opt. Express 21(4), 4093 (2013)
CrossRef
ADS
Google scholar
|
[40] |
Y. B. Sheng, J. Pan, R. Guo, L. Zhou, and L. Wang, Efficient N-particle W state concentration with different parity check gates, Sci. China Phys. Mech. Astron. 58(6), 060301 (2015)
CrossRef
ADS
Google scholar
|
[41] |
M. Y. Wang, F. L. Yan, and J. Z. Xu, Perfect entanglement concentration of an arbitrary four-photon polarization entangled state via quantum nondemolition detectors, J. Phys. B-At. Mol. Opt. 49(15), 155502 (2016)
CrossRef
ADS
Google scholar
|
[42] |
C. C. Qu, L. Zhou, and Y. B. Sheng, Entanglement concentration for concatenated Greenberger– Horne–Zeilinger state, Quantum Inform. Process 14(11), 4131 (2015)
CrossRef
ADS
Google scholar
|
[43] |
J. Pan, L. Zhou, S. P. Gu, X. F. Wang, Y. B. Sheng, and Q. Wang, Efficient entanglement concentration for concatenated Greenberger–Horne–Zeilinger state with the cross-Kerr nonlinearity, Quantum Inform. Process 15(4), 1669 (2016)
CrossRef
ADS
Google scholar
|
[44] |
A. M. Steane and B. Ibinson, Fault-tolerant logical gate networks for Calderbank–Shor–Steane codes, Phys. Rev. A 72(5), 052335 (2005)
CrossRef
ADS
Google scholar
|
[45] |
S. Muralidharan, C. L. Zou, L. S. Li, J. M. Wen, and L. Jiang, Overcoming erasure errors with multilevel systems, New J. Phys. 19(1), 013026 (2017)
CrossRef
ADS
Google scholar
|
[46] |
F. Fröwis and W. Dür, Stable macroscopic quantum superpositions, Phys. Rev. Lett. 106(11), 110402 (2011)
CrossRef
ADS
Google scholar
|
[47] |
H. Lu, L. K. Chen, C. Liu, P. Xu, X. C. Yao, L. Li, N. L. Liu, B. Zhao, Y. A. Chen, and J. W. Pan, Experimental realization of a concatenated Greenberger–Horne–Zeilinger state for macroscopic quantum superpositions, Nat. Photonics 8(5), 364 (2014)
CrossRef
ADS
Google scholar
|
[48] |
F. Fröwis and W. Dür, Stability of encoded macroscopic quantum superpositions, Phys. Rev. A 85(5), 052329 (2012)
CrossRef
ADS
Google scholar
|
[49] |
F. Kesting, F. Fröwis, and W. Dür, Effective noise channels for encoded quantum systems, Phys. Rev. A 88(4), 042305 (2013)
CrossRef
ADS
Google scholar
|
[50] |
D. Ding, F. L. Yan, and T. Gao, Preparation of kmphoton concatenated Greenberger–Horne–Zeilinger states for observing distinctive quantum effects at macroscopic scales, JOSA B 30(11), 3075 (2013)
CrossRef
ADS
Google scholar
|
[51] |
L. Zhou and Y. B. Sheng, Complete logic Bell-state analysis assisted with photonic Faraday rotation, Phys. Rev. A 92(4), 042314 (2015)
CrossRef
ADS
Google scholar
|
[52] |
Y. B. Sheng and L. Zhou, Two-step complete polarization logic Bell-state analysis, Sci. Rep. 5(1), 13453 (2015)
CrossRef
ADS
Google scholar
|
[53] |
L. Zhou and Y. B. Sheng, Feasible logic Bell-state analysis with linear optics, Sci. Rep. 6(1), 20901 (2016)
CrossRef
ADS
Google scholar
|
[54] |
T. C. Ralph, A. J. F. Hayes, and A. Gilchrist, Losstolerant optical qubits, Phys. Rev. Lett. 95(10), 100501 (2005)
CrossRef
ADS
Google scholar
|
[55] |
A. Gilchrist, A. J. F. Hayes, and T. C. Ralph, Efficient parity-encoded optical quantum computing, Phys. Rev. A 75(5), 052328 (2007)
CrossRef
ADS
Google scholar
|
[56] |
J. Borregaard, A. S. Sørensen, J. I. Cirac, and M. D. Lukin, Efficient quantum computation in a network with probabilistic gates and logical encoding, Phys. Rev. A 95(4), 042312 (2017)
CrossRef
ADS
Google scholar
|
[57] |
S. Muralidharan, J. Kim, N. Lütkenhaus, M. D. Lukin, and L. Jiang, Ultrafast and fault-tolerant quantum communication across long distances, Phys. Rev. Lett. 112(25), 250501 (2014)
CrossRef
ADS
Google scholar
|
[58] |
F. Ewert, M. Bergmann, and P. van Loock, Ultrafast long-distance quantum communication with static linear optics, Phys. Rev. Lett. 117(21), 210501 (2016)
CrossRef
ADS
Google scholar
|
[59] |
K. Nemoto and W. J. Munro, Nearly deterministic linear optical controlled-not gate, Phys. Rev. Lett. 93(25), 250502 (2004)
CrossRef
ADS
Google scholar
|
[60] |
B. He, Q. Lin, and C. Simon, Cross-Kerr nonlinearity between continuous-mode coherent states and single photons, Phys. Rev. A 83(5), 053826 (2011)
CrossRef
ADS
Google scholar
|
[61] |
Y. Q. He, D. Ding, F. L. Yan, and T. Gao, Exploration of photon-number entangled states using weak nonlinearities, Opt. Express 23(17), 21671 (2015)
CrossRef
ADS
Google scholar
|
[62] |
X. M. Xiu, Q. Y. Li, Y. F. Lin, H. K. Dong, L. Dong, and Y. J. Gao, Preparation of four-photon polarization entangled decoherence-free states employing weak cross-Kerr nonlinearities, Phys. Rev. A 94(4), 042321 (2016)
CrossRef
ADS
Google scholar
|
[63] |
L. Dong, Y. F. Yin, C. Cui, H. K. Dong, X. M. Xiu, and Y. J. Gao, Fault-tolerant distribution of GHZ states and controlled DSQC based on parity analyses, Opt. Express 25(16), 18581 (2017)
CrossRef
ADS
Google scholar
|
[64] |
L. Dong, J. X. Wang, Q. Y. Li, H. Z. Shen, H. K. Dong, X. M. Xiu, and Y. J. Gao, Single logical qubit information encoding scheme with the minimal optical decoherence free subsystem, Opt. Lett. 41(5), 1030 (2016)
CrossRef
ADS
Google scholar
|
[65] |
L. Dong, Y. F. Lin, Q. Y. Li, H. K. Dong, X. M. Xiu, and Y. J. Gao, Generation of three-photon polarization entangled decoherence-free states, Ann. Phys. 371, 287 (2016)
CrossRef
ADS
Google scholar
|
[66] |
P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, Linear optical quantum computing with photonic qubits, Rev. Mod. Phys. 79(1), 135 (2007)
CrossRef
ADS
Google scholar
|
[67] |
G. Kirchmair, B. Vlastakis, Z. Leghtas, S. E. Nigg, H. Paik, E. Ginossar, M. Mirrahimi, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, Observation of quantum state collapse and revival due to the single-photon Kerr effect, Nature 495(7440), 205 (2013)
CrossRef
ADS
Google scholar
|
[68] |
A. Feizpour, M. Hallaji, G. Dmochowski, and A. M. Steinberg, Observation of the nonlinear phase shift due to single post-selected photons, Nat. Phys. 11(11), 905 (2015)
|
/
〈 | 〉 |