Thermoelectricity in B80-based single-molecule junctions: First-principles investigation
Ying-Xiang Zhen, Ming Yang, Rui-Ning Wang
Thermoelectricity in B80-based single-molecule junctions: First-principles investigation
Thermoelectricity is a thermorelated property that is of great importance in single-molecule junctions. The electrical conductance (σ), electron-derived thermal conductance (κel) and Seebeck coefficient (S) of B80-based single-molecule junctions are investigated by using density functional theory in combination with non-equilibrium Green’s function. When the distance between the left/right electrodes is 11.4 Å, the relationship between σ and κel obeys the Wiedemann–Franz law very well because of the strong hybridization between B80 molecular orbitals and the surface states of Au electrodes. Furthermore, the calculated Lorenz number is close to the famous value in metal or degenerate semiconductors. In addition, S is only –19.09 μV/K at 300 K, thus leading to the smaller electron’s thermoelectric figure of merit (ZelT = S2σT/κel). Interestingly, the strain and chemical potential can modulate B80-based single-molecule junctions from n-type to p-type when the compressive strain reaches –0.6 Å or the chemical potential shifts to –0.16 eV. This might be attributed that S reflects the asymmetry in the electrical conductance with respect to the chemical potential and is proportional to the slopes of the transmission spectrum.
thermoelectricity / single-molecule junction / non-equilibrium Green function
[1] |
A. Aviram and M. A. Ratner, Molecular rectifiers, Chem. Phys. Lett. 29(2), 277 (1974)
CrossRef
ADS
Google scholar
|
[2] |
X. Zheng, W. Lu, T. A. Abtew, V. Meunier, and J. Bernholc, Negative differential resistance in C60-based electronic devices, ACS Nano 4(12), 7205 (2010)
CrossRef
ADS
Google scholar
|
[3] |
R. Liu, S. H. Ke, H. U. Baranger, and W. Yang,J. Am. Chem. Soc. 128, 2074 (2005)
|
[4] |
T. A. Papadopoulos, I. M. Grace, and C. J. Lambert, Control of electron transport through Fano resonances in molecular wires, Phys. Rev. B 74(19), 193306 (2006)
CrossRef
ADS
Google scholar
|
[5] |
W. Wang, T. Lee, and M. A. Reed, Mechanism of electron conduction in self-assembled alkanethiol monolayer devices, Phys. Rev. B 68(3), 035416 (2003)
CrossRef
ADS
Google scholar
|
[6] |
H. Song, M. A. Reed, and T. Lee, Single molecule electronic devices, Adv. Mater. 23(14), 1583 (2011)
CrossRef
ADS
Google scholar
|
[7] |
P. Reddy, S. Y. Jang, R. A. Segalman, and A. Majumdar, Thermoelectricity in molecular junctions, Science 315(5818), 1568 (2007)
CrossRef
ADS
Google scholar
|
[8] |
M. Paulsson and S. Datta, Thermoelectric effect in molecular electronics, Phys. Rev. B 67(24), 241403 (2003)
CrossRef
ADS
Google scholar
|
[9] |
C. Evangeli, K. Gillemot, E. Leary, M. T. Gonz’alez, G. Rubio-Bollinger, C. J. Lambert, and N. Agraït, Engineering the thermopower of C60 molecular junctions, Nano Lett. 13(5), 2141 (2013)
CrossRef
ADS
Google scholar
|
[10] |
S. K. Yee, J. A. Malen, A. Majumdar, and R. A. Segalman, Thermoelectricity in fullerene–metal heterojunctions, Nano Lett. 11(10), 4089 (2011)
CrossRef
ADS
Google scholar
|
[11] |
F. Hüser and G. C. Solomon, J. Phys. Chem. C 119, 14056 (2015)
CrossRef
ADS
Google scholar
|
[12] |
Y. Dubi and M. Di Ventra, Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions, Rev. Mod. Phys. 83(1), 131 (2011)
CrossRef
ADS
Google scholar
|
[13] |
A. Shakouri, Recent developments in semiconductor thermoelectric physics and materials, Annu. Rev. Mater. Res. 41(1), 399 (2011)
CrossRef
ADS
Google scholar
|
[14] |
M. Tsutsui, T. Morikawa, Y. He, A. Arima, and M. Taniguchi, High thermopower of mechanically stretched single-molecule junctions, Sci. Rep. 5(1), 11519 (2015)
CrossRef
ADS
Google scholar
|
[15] |
A. Torres, R. B. Pontes, A. J. R. da Silva, and A. Fazzio, Tuning the thermoelectric properties of a single-molecule junction by mechanical stretching, Phys. Chem. Chem. Phys. 17(7), 5386 (2015)
CrossRef
ADS
Google scholar
|
[16] |
R. Q. Wang, L. Sheng, R. Shen, B. Wang, and D. Y. Xing, Thermoelectric effect in single-molecule-magnet junctions,Phys. Rev. Lett. 105(5), 057202 (2010)
CrossRef
ADS
Google scholar
|
[17] |
K. Yoshida, L. Hamada, S. Sakata, A. Umeno, M. Tsukada, and K. Hirakawa, Gate-tunable large negative tunnel magnetoresistance in Ni–C60–Ni single molecule transistors, Nano Lett. 13(2), 481 (2013)
CrossRef
ADS
Google scholar
|
[18] |
A. Tan, J. Balachandran, S. Sadat, V. Gavini, B. D. Dunietz, S. Y. Jang, and P. Reddy, Effect of length and contact chemistry on the electronic structure and thermoelectric properties of molecular junctions, J. Am. Chem. Soc. 133(23), 8838 (2011)
CrossRef
ADS
Google scholar
|
[19] |
Y. S. Liu and Y. C. Chen, Seebeck coefficient of thermoelectric molecular junctions: First-principles calculations, Phys. Rev. B 79(19), 193101 (2009)
CrossRef
ADS
Google scholar
|
[20] |
I. Pallecchi, F. Telesio, D. Li, A. Fête, S. Gariglio, J. M. Triscone, A. Filippetti, P. Delugas, V. Fiorentini, and D. Marré, Giant oscillating thermopower at oxide interfaces, Nat. Commun. 6(1), 6678 (2015)
CrossRef
ADS
Google scholar
|
[21] |
U. Sivan and Y. Imry, Multichannel Landauer formula for thermoelectric transport with application to thermopower near the mobility edge, Phys. Rev. B 33(1), 551 (1986)
CrossRef
ADS
Google scholar
|
[22] |
X. Shi, L. D. Chen, S. Q. Bai, X. Y. Huang, X. Y. Zhao, Q. Yao, and C. Uher, Influence of fullerene dispersion on high temperature thermoelectric properties of BayCo4Sb12-based composites, J. Appl. Phys. 102(10), 103709 (2007)
CrossRef
ADS
Google scholar
|
[23] |
C. A. Perroni, D. Ninno, and V. Cataudella, Electronvibration effects on the thermoelectric efficiency of molecular junctions, Phys. Rev. B 90(12), 125421 (2014)
CrossRef
ADS
Google scholar
|
[24] |
G. D. Mahan and J. O. Sofo, The best thermoelectric,Proc. Natl. Acad. Sci. USA 93(15), 7436 (1996)
CrossRef
ADS
Google scholar
|
[25] |
Y. S. Liu, B. C. Hsu, and Y. C. Chen, Effect of thermoelectric cooling in nanoscale junctions, J. Phys. Chem. C 115(13), 6111 (2011)
CrossRef
ADS
Google scholar
|
[26] |
Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N. H. Seong, D. G. Cahill, and D. D. Dlott, Ultrafast flash thermal conductance of molecular chains, Science 317(5839), 787 (2007)
CrossRef
ADS
Google scholar
|
[27] |
T. Shiota, A. I. Mares, A. M. C. Valkering, T. H. Oosterkamp, and J. M. van Ruitenbeek, Mechanical properties of Pt monatomic chains, Phys. Rev. B 77(12), 125411 (2008)
CrossRef
ADS
Google scholar
|
[28] |
J. C. Klöckner, R. Siebler, J. C. Cuevas, and F. Pauly, Thermal conductance and thermoelectric figure of merit of C60-based single-molecule junctions: Electrons, phonons, and photons, Phys. Rev. B 95(24), 245404 (2017)
CrossRef
ADS
Google scholar
|
[29] |
C. A. Perroni, D. Ninno, and V. Cataudella, Thermoelectric efficiency of molecular junctions, J. Phys.: Condens. Matter 28(37), 373001 (2016)
CrossRef
ADS
Google scholar
|
[30] |
B. C. Hsu, C. W. Chiang, and Y. C. Chen, Effect of electron–vibration interactions on the thermoelectric efficiency of molecular junctions, Nanotechnology 23(27), 275401 (2012)
CrossRef
ADS
Google scholar
|
[31] |
Y. Xue, S. Datta, and M. A. Ratner, First-principles based matrix Green’s function approach to molecular electronic devices: general formalism, Chem. Phys. 281(2–3), 151 (2002)
CrossRef
ADS
Google scholar
|
[32] |
A. R. Rocha, V. M. García-Suárez, S. Bailey, C. Lambert, J. Ferrer, and S. Sanvito, Spin and molecular electronics in atomically generated orbital landscapes, Phys. Rev. B 73(8), 085414 (2006)
CrossRef
ADS
Google scholar
|
[33] |
D. R. Hamann, M. Schlüter, and C. Chiang, Normconserving pseudopotentials, Phys. Rev. Lett. 43(20), 1494 (1979)
CrossRef
ADS
Google scholar
|
[34] |
N. Troullier and J. L. Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B 43(3), 1993 (1991)
CrossRef
ADS
Google scholar
|
[35] |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef
ADS
Google scholar
|
[36] |
H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12), 5188 (1976)
CrossRef
ADS
Google scholar
|
[37] |
B. Kubala, J. König, and J. Pekola, Violation of the Wiedemann–Franz law in a single-electron transistor, Phys. Rev. Lett. 100(6), 066801 (2008)
CrossRef
ADS
Google scholar
|
[38] |
G. Gómez-Silva, O. Ávalos-Ovando, M. L. Ladrón de Guevara, and P. A. Orellana, Enhancement of thermoelectric efficiency and violation of the Wiedemann–Franz law due to Fano effect, J. Appl. Phys. 111(5), 053704 (2012)
CrossRef
ADS
Google scholar
|
[39] |
R. N. Wang, G. Y. Dong, S. F. Wang, G. S. Fu, and J. L. Wang, Impact of contact couplings on thermoelectric properties of anti, Fano, and Breit-Wigner resonant junctions, J. Appl. Phys. 120(18), 184303 (2016)
CrossRef
ADS
Google scholar
|
[40] |
R. Stadler and T. Markussen, Controlling the transmission line shape of molecular t-stubs and potential thermoelectric applications, J. Chem. Phys. 135(15), 154109 (2011)
CrossRef
ADS
Google scholar
|
[41] |
N. Hauptmann, F. Mohn, L. Gross, G. Meyer, T. Frederiksen, and R. Berndt, Force and conductance during contact formation to a C60 molecule,New J. Phys. 14(7), 073032 (2012)
CrossRef
ADS
Google scholar
|
[42] |
K. S. Thygesen and A. Rubio, Renormalization of molecular quasiparticle levels at metal-molecule interfaces: Trends across binding regimes, Phys. Rev. Lett. 102(4), 046802 (2009)
CrossRef
ADS
Google scholar
|
[43] |
H. Usui and K. Kuroki, Enhanced power factor and reduced Lorenz number in the Wiedemann–Franz law due to pudding mold type band structures, J. Appl. Phys. 121(16), 165101 (2017)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |