Thermoelectricity in B80-based single-molecule junctions: First-principles investigation

Ying-Xiang Zhen, Ming Yang, Rui-Ning Wang

PDF(1506 KB)
PDF(1506 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (2) : 23603. DOI: 10.1007/s11467-018-0865-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Thermoelectricity in B80-based single-molecule junctions: First-principles investigation

Author information +
History +

Abstract

Thermoelectricity is a thermorelated property that is of great importance in single-molecule junctions. The electrical conductance (σ), electron-derived thermal conductance (κel) and Seebeck coefficient (S) of B80-based single-molecule junctions are investigated by using density functional theory in combination with non-equilibrium Green’s function. When the distance between the left/right electrodes is 11.4 Å, the relationship between σ and κel obeys the Wiedemann–Franz law very well because of the strong hybridization between B80 molecular orbitals and the surface states of Au electrodes. Furthermore, the calculated Lorenz number is close to the famous value in metal or degenerate semiconductors. In addition, S is only –19.09 μV/K at 300 K, thus leading to the smaller electron’s thermoelectric figure of merit (ZelT = S2σT/κel). Interestingly, the strain and chemical potential can modulate B80-based single-molecule junctions from n-type to p-type when the compressive strain reaches –0.6 Å or the chemical potential shifts to –0.16 eV. This might be attributed that S reflects the asymmetry in the electrical conductance with respect to the chemical potential and is proportional to the slopes of the transmission spectrum.

Keywords

thermoelectricity / single-molecule junction / non-equilibrium Green function

Cite this article

Download citation ▾
Ying-Xiang Zhen, Ming Yang, Rui-Ning Wang. Thermoelectricity in B80-based single-molecule junctions: First-principles investigation. Front. Phys., 2019, 14(2): 23603 https://doi.org/10.1007/s11467-018-0865-0

References

[1]
A. Aviram and M. A. Ratner, Molecular rectifiers, Chem. Phys. Lett. 29(2), 277 (1974)
CrossRef ADS Google scholar
[2]
X. Zheng, W. Lu, T. A. Abtew, V. Meunier, and J. Bernholc, Negative differential resistance in C60-based electronic devices, ACS Nano 4(12), 7205 (2010)
CrossRef ADS Google scholar
[3]
R. Liu, S. H. Ke, H. U. Baranger, and W. Yang,J. Am. Chem. Soc. 128, 2074 (2005)
[4]
T. A. Papadopoulos, I. M. Grace, and C. J. Lambert, Control of electron transport through Fano resonances in molecular wires, Phys. Rev. B 74(19), 193306 (2006)
CrossRef ADS Google scholar
[5]
W. Wang, T. Lee, and M. A. Reed, Mechanism of electron conduction in self-assembled alkanethiol monolayer devices, Phys. Rev. B 68(3), 035416 (2003)
CrossRef ADS Google scholar
[6]
H. Song, M. A. Reed, and T. Lee, Single molecule electronic devices, Adv. Mater. 23(14), 1583 (2011)
CrossRef ADS Google scholar
[7]
P. Reddy, S. Y. Jang, R. A. Segalman, and A. Majumdar, Thermoelectricity in molecular junctions, Science 315(5818), 1568 (2007)
CrossRef ADS Google scholar
[8]
M. Paulsson and S. Datta, Thermoelectric effect in molecular electronics, Phys. Rev. B 67(24), 241403 (2003)
CrossRef ADS Google scholar
[9]
C. Evangeli, K. Gillemot, E. Leary, M. T. Gonz’alez, G. Rubio-Bollinger, C. J. Lambert, and N. Agraït, Engineering the thermopower of C60 molecular junctions, Nano Lett. 13(5), 2141 (2013)
CrossRef ADS Google scholar
[10]
S. K. Yee, J. A. Malen, A. Majumdar, and R. A. Segalman, Thermoelectricity in fullerene–metal heterojunctions, Nano Lett. 11(10), 4089 (2011)
CrossRef ADS Google scholar
[11]
F. Hüser and G. C. Solomon, J. Phys. Chem. C 119, 14056 (2015)
CrossRef ADS Google scholar
[12]
Y. Dubi and M. Di Ventra, Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions, Rev. Mod. Phys. 83(1), 131 (2011)
CrossRef ADS Google scholar
[13]
A. Shakouri, Recent developments in semiconductor thermoelectric physics and materials, Annu. Rev. Mater. Res. 41(1), 399 (2011)
CrossRef ADS Google scholar
[14]
M. Tsutsui, T. Morikawa, Y. He, A. Arima, and M. Taniguchi, High thermopower of mechanically stretched single-molecule junctions, Sci. Rep. 5(1), 11519 (2015)
CrossRef ADS Google scholar
[15]
A. Torres, R. B. Pontes, A. J. R. da Silva, and A. Fazzio, Tuning the thermoelectric properties of a single-molecule junction by mechanical stretching, Phys. Chem. Chem. Phys. 17(7), 5386 (2015)
CrossRef ADS Google scholar
[16]
R. Q. Wang, L. Sheng, R. Shen, B. Wang, and D. Y. Xing, Thermoelectric effect in single-molecule-magnet junctions,Phys. Rev. Lett. 105(5), 057202 (2010)
CrossRef ADS Google scholar
[17]
K. Yoshida, L. Hamada, S. Sakata, A. Umeno, M. Tsukada, and K. Hirakawa, Gate-tunable large negative tunnel magnetoresistance in Ni–C60–Ni single molecule transistors, Nano Lett. 13(2), 481 (2013)
CrossRef ADS Google scholar
[18]
A. Tan, J. Balachandran, S. Sadat, V. Gavini, B. D. Dunietz, S. Y. Jang, and P. Reddy, Effect of length and contact chemistry on the electronic structure and thermoelectric properties of molecular junctions, J. Am. Chem. Soc. 133(23), 8838 (2011)
CrossRef ADS Google scholar
[19]
Y. S. Liu and Y. C. Chen, Seebeck coefficient of thermoelectric molecular junctions: First-principles calculations, Phys. Rev. B 79(19), 193101 (2009)
CrossRef ADS Google scholar
[20]
I. Pallecchi, F. Telesio, D. Li, A. Fête, S. Gariglio, J. M. Triscone, A. Filippetti, P. Delugas, V. Fiorentini, and D. Marré, Giant oscillating thermopower at oxide interfaces, Nat. Commun. 6(1), 6678 (2015)
CrossRef ADS Google scholar
[21]
U. Sivan and Y. Imry, Multichannel Landauer formula for thermoelectric transport with application to thermopower near the mobility edge, Phys. Rev. B 33(1), 551 (1986)
CrossRef ADS Google scholar
[22]
X. Shi, L. D. Chen, S. Q. Bai, X. Y. Huang, X. Y. Zhao, Q. Yao, and C. Uher, Influence of fullerene dispersion on high temperature thermoelectric properties of BayCo4Sb12-based composites, J. Appl. Phys. 102(10), 103709 (2007)
CrossRef ADS Google scholar
[23]
C. A. Perroni, D. Ninno, and V. Cataudella, Electronvibration effects on the thermoelectric efficiency of molecular junctions, Phys. Rev. B 90(12), 125421 (2014)
CrossRef ADS Google scholar
[24]
G. D. Mahan and J. O. Sofo, The best thermoelectric,Proc. Natl. Acad. Sci. USA 93(15), 7436 (1996)
CrossRef ADS Google scholar
[25]
Y. S. Liu, B. C. Hsu, and Y. C. Chen, Effect of thermoelectric cooling in nanoscale junctions, J. Phys. Chem. C 115(13), 6111 (2011)
CrossRef ADS Google scholar
[26]
Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N. H. Seong, D. G. Cahill, and D. D. Dlott, Ultrafast flash thermal conductance of molecular chains, Science 317(5839), 787 (2007)
CrossRef ADS Google scholar
[27]
T. Shiota, A. I. Mares, A. M. C. Valkering, T. H. Oosterkamp, and J. M. van Ruitenbeek, Mechanical properties of Pt monatomic chains, Phys. Rev. B 77(12), 125411 (2008)
CrossRef ADS Google scholar
[28]
J. C. Klöckner, R. Siebler, J. C. Cuevas, and F. Pauly, Thermal conductance and thermoelectric figure of merit of C60-based single-molecule junctions: Electrons, phonons, and photons, Phys. Rev. B 95(24), 245404 (2017)
CrossRef ADS Google scholar
[29]
C. A. Perroni, D. Ninno, and V. Cataudella, Thermoelectric efficiency of molecular junctions, J. Phys.: Condens. Matter 28(37), 373001 (2016)
CrossRef ADS Google scholar
[30]
B. C. Hsu, C. W. Chiang, and Y. C. Chen, Effect of electron–vibration interactions on the thermoelectric efficiency of molecular junctions, Nanotechnology 23(27), 275401 (2012)
CrossRef ADS Google scholar
[31]
Y. Xue, S. Datta, and M. A. Ratner, First-principles based matrix Green’s function approach to molecular electronic devices: general formalism, Chem. Phys. 281(2–3), 151 (2002)
CrossRef ADS Google scholar
[32]
A. R. Rocha, V. M. García-Suárez, S. Bailey, C. Lambert, J. Ferrer, and S. Sanvito, Spin and molecular electronics in atomically generated orbital landscapes, Phys. Rev. B 73(8), 085414 (2006)
CrossRef ADS Google scholar
[33]
D. R. Hamann, M. Schlüter, and C. Chiang, Normconserving pseudopotentials, Phys. Rev. Lett. 43(20), 1494 (1979)
CrossRef ADS Google scholar
[34]
N. Troullier and J. L. Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B 43(3), 1993 (1991)
CrossRef ADS Google scholar
[35]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[36]
H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12), 5188 (1976)
CrossRef ADS Google scholar
[37]
B. Kubala, J. König, and J. Pekola, Violation of the Wiedemann–Franz law in a single-electron transistor, Phys. Rev. Lett. 100(6), 066801 (2008)
CrossRef ADS Google scholar
[38]
G. Gómez-Silva, O. Ávalos-Ovando, M. L. Ladrón de Guevara, and P. A. Orellana, Enhancement of thermoelectric efficiency and violation of the Wiedemann–Franz law due to Fano effect, J. Appl. Phys. 111(5), 053704 (2012)
CrossRef ADS Google scholar
[39]
R. N. Wang, G. Y. Dong, S. F. Wang, G. S. Fu, and J. L. Wang, Impact of contact couplings on thermoelectric properties of anti, Fano, and Breit-Wigner resonant junctions, J. Appl. Phys. 120(18), 184303 (2016)
CrossRef ADS Google scholar
[40]
R. Stadler and T. Markussen, Controlling the transmission line shape of molecular t-stubs and potential thermoelectric applications, J. Chem. Phys. 135(15), 154109 (2011)
CrossRef ADS Google scholar
[41]
N. Hauptmann, F. Mohn, L. Gross, G. Meyer, T. Frederiksen, and R. Berndt, Force and conductance during contact formation to a C60 molecule,New J. Phys. 14(7), 073032 (2012)
CrossRef ADS Google scholar
[42]
K. S. Thygesen and A. Rubio, Renormalization of molecular quasiparticle levels at metal-molecule interfaces: Trends across binding regimes, Phys. Rev. Lett. 102(4), 046802 (2009)
CrossRef ADS Google scholar
[43]
H. Usui and K. Kuroki, Enhanced power factor and reduced Lorenz number in the Wiedemann–Franz law due to pudding mold type band structures, J. Appl. Phys. 121(16), 165101 (2017)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1506 KB)

Accesses

Citations

Detail

Sections
Recommended

/