Dynamics of the phase-change material GeTe across the structural phase transition

T. Chatterji, S. Rols, U. D. Wdowik

PDF(1215 KB)
PDF(1215 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (2) : 23601. DOI: 10.1007/s11467-018-0864-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Dynamics of the phase-change material GeTe across the structural phase transition

Author information +
History +

Abstract

Results of inelastic neutron scattering experiments and ab initio molecular dynamics simulations for GeTe – the parent compound of phase-change materials are reported. The inelastic neutron spectra of GeTe powder samples have been determined in the temperature range extending from 300 to 700 K. The phonon peaks undergo thermal shifts resulting from anharmonic effects being weaker for acoustic than optic modes. A small concentration of free charge carries arising from the presence of Ge-vacancies was found not to affect significantly the neutron weighted phonon densities of states of GeTe. The spectral pattern changes qualitatively across the structural phase transition, but the local structure of GeTe remains hardly affected, as confirmed by the analysis of temperature dependence of the pairdistribution function obtained from ab initio molecular dynamics investigations. The present theoretical studies support in a wide extent our experimental observations and also those provided by local probe methods.

Keywords

phase-change materials / inelastic neutron scattering / ab initio molecular dynamics

Cite this article

Download citation ▾
T. Chatterji, S. Rols, U. D. Wdowik. Dynamics of the phase-change material GeTe across the structural phase transition. Front. Phys., 2019, 14(2): 23601 https://doi.org/10.1007/s11467-018-0864-1

References

[1]
M. Wuttig and N. Yamada, Phase-change materials for rewriteable data storage, Nat. Mater. 6(11), 824 (2007)
CrossRef ADS Google scholar
[2]
S. Raoux, F. Xiong, M. Wuttig, and E. Pop, Phase change materials and phase change memory, MRS Bull. 39(08), 703 (2014)
CrossRef ADS Google scholar
[3]
L. Wang, L. Tu, and J. Wen, Application of phase-change materials in memory taxonomy, Sci. Technol. Adv. Mater. 18(1), 406 (2017)
CrossRef ADS Google scholar
[4]
E. F. Steigmeier and G. Harbeke, Soft phonon mode and ferroelectricity in GeTe, Solid State Commun. 8(16), 1275 (1970)
CrossRef ADS Google scholar
[5]
T. Chattopadhyay, J. X. Boucherele, and H. von Schnering, Neutron diffraction study on the structural phase transition in GeTe, J. Phys. C 20(10), 1431 (1987)
[6]
P. Fons, A. V. Kolobov, M. Krbal, J. Tominaga, K. S. Andrikopoulos, S. N. Yannopoulos, G. A. Voyiatzis, and T. Uruga, Phase transition in crystalline GeTe: Pitfalls of averaging effects, Phys. Rev. B 82(15), 155209 (2010)
CrossRef ADS Google scholar
[7]
T. Matsunaga, P. Fons, V. Kolobov, J. Tominaga, and N. Yamada, The order-disorder transition in GeTe: Views from different length-scales, Appl. Phys. Lett. 99(23), 231907 (2011)
CrossRef ADS Google scholar
[8]
F. Kadlec, C. Kadlec, P. Kužel, and J. Petzelt, Study of the ferroelectric phase transition in germanium telluride using time-domain terahertz spectroscopy, Phys. Rev. B 84(20), 205209 (2011)
CrossRef ADS Google scholar
[9]
M. J. Polking, J. J. Urban, D. J. Milliron, H. Zheng, E. Chan, M. A. Caldwell, S. Raoux, C. F. Kisielowski, J. W. III Ager, R. Ramesh, and A. P. Alivisatos, Sizedependent polar ordering in colloidal GeTe nanocrystals, Nano Lett. 11(3), 1147 (2011)
CrossRef ADS Google scholar
[10]
J. Hudspeth, T. Chatterji, S. Billinge, and S. Kimber, Unifying local and average structure in the phase change material GeTe, arXiv: 1506.08944 (2015)
[11]
T. Chatterji, C. Kumar, and U. D. Wdowik, Anomalous temperature-induced volume contraction in GeTe, Phys. Rev. B 91(5), 054110 (2015)
CrossRef ADS Google scholar
[12]
G. Kalra and S. Murugavel, The role of atomic vacancies on phonon confinement in a-GeTe, AIP Adv. 5(4), 047127 (2015)
CrossRef ADS Google scholar
[13]
D. Yang, T. Chatterji, J. A. Schiemer, and M. A. Carpenter, Strain coupling, microstructure dynamics, and acoustic mode softening in germanium telluride, Phys. Rev. B 93(14), 144109 (2016)
CrossRef ADS Google scholar
[14]
M. Sist, H. Kasai, E. M. J. Hedegaard, and B. B. Iversen, Role of vacancies in the high-temperature pseudodisplacive phase transition in GeTe, Phys. Rev. B 97(9), 094116 (2018)
CrossRef ADS Google scholar
[15]
S. D. Gupta, G. V. Varada, and G. S. Agarwal, Surface plasmons in two-sided corrugated thin films, Phys. Rev. B 36(12), 6331 (1987)
CrossRef ADS Google scholar
[16]
J. Raty, V. Godlevsky, P. Ghosez, C. Bichara, J. Gaspard, and J. Chelikowsky, Evidence of a reentrant Peierls distortion in liquid GeTe, Phys. Rev. Lett. 85(9), 1950 (2000)
CrossRef ADS Google scholar
[17]
R. Shaltaf, X. Gonze, M. Cardona, R. K. Kremer, and G. Siegle, Lattice dynamics and specific heat of a-GeTe: Theoretical and experimental study, Phys. Rev. B 79(7), 075204 (2009)
CrossRef ADS Google scholar
[18]
A. J. Bevolo, H. R. Shanks, and D. E. Eckels, Molar heat capacity of GeTe, SnTe, and PbTe from 0.9 to 60 K, Phys. Rev. B 13(8), 3523 (1976)
CrossRef ADS Google scholar
[19]
J. Raty, P. Noé, G. Ghezzi, S. Maitrejean, C. Bichara, and F. Hippert, Vibrational properties and stabilization mechanism of the amorphous phase of doped GeTe, Phys. Rev. B 88(1), 014203 (2013)
CrossRef ADS Google scholar
[20]
U. D. Wdowik, K. Parlinski, S. Rols, and T. Chatterji, Soft-phonon mediated structural phase transition in GeTe, Phys. Rev. B 89(22), 224306 (2014)
CrossRef ADS Google scholar
[21]
K. Jeong, S. Park, D. Park, M. Ahn, J. Han, W. Yang, H. S. Jeong, and M. H. Cho, Evolution of crystal structures in GeTe during phase transition, Sci. Rep. 7(1), 955 (2017)
CrossRef ADS Google scholar
[22]
-D. Dangić, A. R. Murphy, É. D. Murray, S. Fahy, and I. Savić, Coupling between acoustic and soft transverse optical phonons leads to negative thermal expansion of GeTe near the ferroelectric phase transition, Phys. Rev. B 97(22), 224106 (2018)
CrossRef ADS Google scholar
[23]
R. Mittal, M. K. Gupta, S. L. Chaplot, M. Zbiri, S. Rols, H. Schober, Y. Su, T. Brueckel, and T. Wolf, Spin-phonon coupling in K0.8Fe1.6Se2 and KFe2Se2: Inelastic neutron scattering and ab initiophonon calculations, Phys. Rev. B 87(18), 184502 (2013)
CrossRef ADS Google scholar
[24]
H. Schober, A. Tölle, B. Renker, R. Heid, and F. Gompf, Microscopic dynamics of A 60C compounds in the plastic, polymer, and dimer phases investigated by inelastic neutron scattering, Phys. Rev. B 56(10), 5937 (1997)
CrossRef ADS Google scholar
[25]
S. W. Lovesey, Theory of Neutron Scattering from Condensed Matter, Clarendon Press, 1986
[26]
G. L. Squires, Introduction to the Theory of Thermal Neutron Scattering, Dover Publications, 1997
[27]
V. F. Sears, Neutron scattering lengths and cross sections, Neutron News 3(3), 26 (1992)
CrossRef ADS Google scholar
[28]
U. D. Wdowik, K. Parlinski, T. Chatterji, S. Rols, and H. Schober, Lattice dynamics of rhenium trioxide from the quasiharmonic approximation, Phys. Rev. B 82(10), 104301 (2010)
CrossRef ADS Google scholar
[29]
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initiototal-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef ADS Google scholar
[30]
G. Kresse and J. Furthmüller, Efficiency of ab-initiototal energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
CrossRef ADS Google scholar
[31]
G. Kresse and J. Hafner, Ab initiomolecular dynamics for liquid metals, Phys. Rev. B 47(1), 558 (1993)
CrossRef ADS Google scholar
[32]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[33]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)], Phys. Rev. Lett. 78(7), 1396 (1997)
CrossRef ADS Google scholar
[34]
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef ADS Google scholar
[35]
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59, 1758 (1998)
CrossRef ADS Google scholar
[36]
S. H. Garofalini, Molecular dynamics simulation of the frequency spectrum of amorphous silica, J. Chem. Phys. 76(6), 3189 (1982)
CrossRef ADS Google scholar
[37]
T. Róg, K. Murzyn, K. Hinsen, and G. R. Kneller, nMoldyn: A program package for a neutron scattering oriented analysis of molecular dynamics simulations, J. Comput. Chem. 24(5), 657 (2003)
CrossRef ADS Google scholar
[38]
D. B. Zhang, T. Sun, and R. M. Wentzcovitch, Phonon quasiparticles and anharmonic free energy in complex systems, Phys. Rev. Lett. 112(5), 058501 (2014)
CrossRef ADS Google scholar
[39]
T. Sun, D. B. Zhang, and R. M. Wentzcovitch, Dynamic stabilization of cubic CaSiO3 perovskite at high temperatures and pressures from ab initiomolecular dynamics, Phys. Rev. B 89(9), 094109 (2014)
CrossRef ADS Google scholar
[40]
U. D. Wdowik and K. Parlinski, Lattice dynamics of cobalt-deficient CoO from first principles, Phys. Rev. B 78(22), 224114 (2008)
CrossRef ADS Google scholar
[41]
U. D. Wdowik and K. Parlinski, Lattice dynamics of Fedoped CoO from first principles, J. Phys.: Condens. Matter 21(12), 125601 (2009)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1215 KB)

Accesses

Citations

Detail

Sections
Recommended

/