Majorana fermions in semiconducting nanowire and Fulde–Ferrell superconductor hybrid structures

Jia Liu, Chun Fai Chan, Ming Gong

PDF(12294 KB)
PDF(12294 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (1) : 13609. DOI: 10.1007/s11467-018-0863-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Majorana fermions in semiconducting nanowire and Fulde–Ferrell superconductor hybrid structures

Author information +
History +

Abstract

The novel idea that spin-orbit coupling (SOC) and an s-wave pairing system can lead to induced pwave pairing with a strong magnetic limit, has stimulated widespread interest in searching for Majorana fermions (MFs) in semiconductor-superconductor hybrid structures. However, despite major advances in the semiconductor nanotechnology, this system has several inherent limitations that prohibit the realization and identification of MFs. We overcome these limitations by replacing the s-wave superconductor with the type-II Fulde–Ferrell (FF) superconductor, in which the center-of-mass momentum of the Cooper pair renormalizes the in-plane Zeeman field and chemical potential. As a result, MFs can be realized in semiconductor nanowires with small values of the Landé g-factor and high carrier densities. The SOC strength directly influences the topological boundary; thus, the topological phase transition and associated MFs can be engineered by an external electric field. Theoretically, almost all semiconductor nanowires can be used to realize MFs by using the FF superconductor. However, we find that InP nanowire is more suitable for the realization of MFs compared to InAs and InSb nanowires. Thus, this new scheme can take full advantage of the semiconductor nanotechnology for the realization of MFs in semiconductor-superconductor hybrid structures.

Keywords

Majorana fermion / topological transition / Pfaffian / FF-superconductor / hybrid structure

Cite this article

Download citation ▾
Jia Liu, Chun Fai Chan, Ming Gong. Majorana fermions in semiconducting nanowire and Fulde–Ferrell superconductor hybrid structures. Front. Phys., 2019, 14(1): 13609 https://doi.org/10.1007/s11467-018-0863-2

References

[1]
F. Wilczek, Majorana returns, Nat. Phys. 5(9), 614 (2009)
[2]
E. Majorana, Teoria simmetrica dell’elettrone e del positrone, Nuovo Cim. 14(4), 171 (1937) (in Italian)
CrossRef ADS Google scholar
[3]
M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
CrossRef ADS Google scholar
[4]
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
CrossRef ADS Google scholar
[5]
N. Read and D. Green, Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect, Phys. Rev. B 61(15), 10267 (2000)
CrossRef ADS Google scholar
[6]
A. Y. Kitaev, Unpaired Majorana fermions in quantum wires, Phys. Uspekhi 44(10S), 131 (2001)
CrossRef ADS Google scholar
[7]
S. Das Sarma, M. Freedman, and C. Nayak, Topologically protected qubits from a possible non-Abelian fractional quantum Hall state, Phys. Rev. Lett. 94(16), 166802 (2005)
CrossRef ADS Google scholar
[8]
L. Fu and C. L. Kane, Superconducting proximity effect and Majorana fermions at the surface of a topological insulator, Phys. Rev. Lett. 100(9), 096407 (2008)
CrossRef ADS Google scholar
[9]
J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Generic new platform for topological quantum computation using semiconductor heterostructures, Phys. Rev. Lett. 104(4), 040502 (2010)
CrossRef ADS Google scholar
[10]
J. Alicea, Majorana fermions in a tunable semiconductor device, Phys. Rev. B 81(12), 125318 (2010)
CrossRef ADS Google scholar
[11]
Y. Oreg, G. Refael, and F. von Oppen, Helical liquids and Majorana bound states in quantum wires, Phys. Rev. Lett. 105(17), 177002 (2010)
CrossRef ADS Google scholar
[12]
R. Lutchyn, J. Sau, and S. Das Sarma, Majorana fermions and a topological phase transition in semiconductorsuperconductor heterostructures, Phys. Rev. Lett. 105(7), 077001 (2010)
CrossRef ADS Google scholar
[13]
A. C. Potter and P. A. Lee, Multichannel generalization of Kitaev’s Majorana end states and a practical route to realize them in thin films, Phys. Rev. Lett. 105(22), 227003 (2010)
CrossRef ADS Google scholar
[14]
J. Liu, Q. Han, L. B. Shao, and Z. D. Wang, Exact solutions for a type of electron pairing model with spinorbit interactions and Zeeman coupling, Phys. Rev. Lett. 107(2), 026405 (2011)
CrossRef ADS Google scholar
[15]
T. H. Hsieh and L. Fu, Majorana fermions and exotic surface andreev bound states in topological superconductors: Application to CuxBi2Se3, Phys. Rev. Lett. 108(10), 107005 (2012)
CrossRef ADS Google scholar
[16]
L. Mao, M. Gong, E. Dumitrescu, S. Tewari, and C. W. Zhang, Hole-doped semiconductor nanowire on top of an s-wave superconductor: A new and experimentally accessible system for Majorana fermions, Phys. Rev. Lett. 108(17), 177001 (2012)
CrossRef ADS Google scholar
[17]
S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo, A. H. MacDonald, B. A. Bernevig, and A. Yazdani, Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor, Science 346(6209), 602 (2014)
CrossRef ADS Google scholar
[18]
E. J. H. Lee, X.-C. Jiang, M. Houzet, R. Aguado, C. M. Lieber, and S. De Franceschi, Spin-resolved Andreev levels and parity crossings in hybrid superconductor–semiconductor nanostructures, NaT. NanotechnoL. 9, 79 (2014)
CrossRef ADS Google scholar
[19]
M. T. Deng, S. Vaitiekėnas, E. B. Hansen, J. Danon, M. Leijnse, K. Flensberg, J. Nygård, P. Krogstrup, and C. M. Marcus, Majorana bound state in a coupled quantum-dot hybrid-nanowire system, Science 354(6319), 1557 (2016)
CrossRef ADS Google scholar
[20]
C. W. Zhang, S. Tewari, R. M. Lutchyn, and S. Das Sarma, px+ ipySuperfluid from s-wave interactions of fermionic cold atoms, Phys. Rev. Lett. 101(16), 160401 (2008)
CrossRef ADS Google scholar
[21]
M. Sato and S. Fujimoto, Existence of Majorana fermions and topological order in nodal superconductors with spinorbit interactions in external magnetic fields, Phys. Rev. Lett. 105(21), 217001 (2010)
CrossRef ADS Google scholar
[22]
M. Gong, S. Tewari, and C. W. Zhang, BCS-BEC crossover and topological phase transition in 3D spinorbit coupled degenerate Fermi gases, Phys. Rev. Lett. 107(19), 195303 (2011)
CrossRef ADS Google scholar
[23]
M. Gong, G. Chen, S. T. Jia, and C. W. Zhang, Searching for Majorana fermions in 2D spin-orbit coupled fermi superfluids at finite temperature, Phys. Rev. Lett. 109(10), 105302 (2012)
CrossRef ADS Google scholar
[24]
H. Hu and X. J. Liu, Fulde–Ferrell superfluidity in ultracold Fermi gases with Rashba spin–orbit coupling, New J. Phys. 15(9), 093037 (2013)
CrossRef ADS Google scholar
[25]
X. J. Liu and H. Hu, Topological superfluid in onedimensional spin-orbit-coupled atomic Fermi gases, Phys. Rev. A 85(3), 033622 (2012)
CrossRef ADS Google scholar
[26]
L. Jiang, T. Kitagawa, J. Alicea, A. R. Akhmerov, D. Pekker, G. Refael, J. I. Cirac, E. Demler, M. D. Lukin, and P. Zoller, Majorana fermions in equilibrium and in driven cold-atom quantum wires, Phys. Rev. Lett. 106(22), 220402 (2011)
CrossRef ADS Google scholar
[27]
L. P. Gor’kov and E. I. Rashba, Superconducting 2D system with lifted spin degeneracy: Mixed singlet-triplet state, Phys. Rev. Lett. 87(3), 037004 (2001)
CrossRef ADS Google scholar
[28]
I. Bonalde, W. Bramer-Escamilla, and E. Bauer, Evidence for line nodes in the superconducting energy gap of noncentrosymmetric CePt3Si from magnetic penetration depth measurements, Phys. Rev. Lett. 94(20), 207002 (2005)
CrossRef ADS Google scholar
[29]
N. Kimura, K. Ito, K. Saitoh, Y. Umeda, H. Aoki, and T. Terashima, Pressure-induced superconductivity in noncentrosymmetric heavy-fermion CeRhSi3, Phys. Rev. Lett. 95(24), 247004 (2005)
CrossRef ADS Google scholar
[30]
I. Sugitani, Y. Okuda, H. Shishido, T. Yamada, A. Thamizhavel, E. Yamamoto, T. D. Matsuda, Y. Haga, T. Takeuchi, R. Settai, and Y. Ōnuki, Pressureinduced heavy-fermion superconductivity in antiferromagnet CeIrSi3 without inversion symmetry, J. Phys. Sov. Jpn. 75(4), 043703 (2006)
CrossRef ADS Google scholar
[31]
H. Mukuda, T. Fujii, T. Ohara, A. Harada, M. Yashima, Y. Kitaoka, Y. Okuda, R. Settai, and Y. Onuki, Enhancement of superconducting transition temperature due to the strong antiferromagnetic spin fluctuations in the noncentrosymmetric heavy-fermion superconductor CeIrSi3: A 29Si NMR study under pressure, Phys. Rev. Lett. 100(10), 107003 (2008)
CrossRef ADS Google scholar
[32]
M. Nishiyama, Y. Inada, and G. Q. Zheng, Spin triplet superconducting state due to broken inversion symmetry in Li2Pt3B, Phys. Rev. Lett. 98(4), 047002 (2007)
CrossRef ADS Google scholar
[33]
S. K. Goh, Y. Mizukami, H. Shishido, D. Watanabe, S. Yasumoto, M. Shimozawa, M. Yamashita, T. Terashima, Y. Yanase, T. Shibauchi, A. I. Buzdin, and Y. Matsuda, Anomalous upper critical field in CeCoIn5/YbCoIn5 superlattices with a Rashba-type heavy fermion interface, Phys. Rev. Lett. 109(15), 157006 (2012)
CrossRef ADS Google scholar
[34]
J. Alicea, New directions in the pursuit of Majorana fermions in solid state systems, Rep. Prog. Phys. 75(7), 076501 (2012)
CrossRef ADS Google scholar
[35]
C. W. J. Beenakker, Search for Majorana fermions in superconductors, Annu. Rev. Con. Mat. Phys. 4(1), 113 (2013)
CrossRef ADS Google scholar
[36]
V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices, Science 336(6084), 1003 (2012)
CrossRef ADS Google scholar
[37]
M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and H. Q. Xu, Anomalous zero-bias conductance peak in a Nb–InSb nanowire–Nb hybrid device, Nano Lett. 12(12), 6414 (2012)
CrossRef ADS Google scholar
[38]
A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H. Shtrikman, Zero-bias peaks and splitting in an Al– InAs nanowire topological superconductor as a signature of Majorana fermions, Nat. Phys. 8(12), 887 (2012)
[39]
L. P. Rokhinson, X. Y. Liu, and J. K. Furdyna, The fractional a.C. Josephson effect in a semiconductor– superconductor nanowire as a signature of Majorana particles, Nat. Phys. 8(11), 795 (2012)
[40]
T. D. Stanescu, S. Tewari, J. D. Sau, and S. Das Sarma, To close or not to close: The fate of the superconducting gap across the topological quantum phase transition in Majorana-carrying semiconductor nanowires, Phys. Rev. Lett. 109(26), 266402 (2012)
CrossRef ADS Google scholar
[41]
C. H. Lin, J. D. Sau, and S. Das Sarma, Zero-bias conductance peak in Majorana wires made of semiconductor/ superconductor hybrid structures, Phys. Rev. B 86(22), 224511 (2012)
CrossRef ADS Google scholar
[42]
J. Liu, A. C. Potter, K. T. Law, and P. A. Lee, Zero-bias peaks in the tunneling conductance of spin-orbit-coupled superconducting wires with and without Majorana endstates, Phys. Rev. Lett. 109(26), 267002 (2012)
CrossRef ADS Google scholar
[43]
G. Ben-Shach, A. Haim, I. Appelbaum, Y. Oreg, A. Yacoby, and B. I. Halperin, Detecting Majorana modes in one-dimensional wires by charge sensing, Phys. Rev. B 91(4), 045403 (2015)
CrossRef ADS Google scholar
[44]
Y. X. Zeng, C. Lei, G. Chaudhary, and A. H. MacDonald, Quantum anomalous Hall Majorana platform, Phys. Rev. B 97(8), 081102 (2018)
CrossRef ADS Google scholar
[45]
D. K. Finnemore, D. E. Mapother, and R. W. Shaw, Critical field curve of superconducting mercury, Phys. Rev. 118(1), 127 (1960)
CrossRef ADS Google scholar
[46]
J. W. Rohlf, Modern Physics from A to Z, Wiley, 1994
[47]
C. E. Pryor and M. E. Flatte, Landé gfactors and orbital momentum quenching in semiconductor quantum dots, Phys. Rev. Lett. 96(2), 026804 (2006)
CrossRef ADS Google scholar
[48]
M. Gong, L. Mao, S. Tewari, and C. W. Zhang, Majorana fermions under uniaxial stress in semiconductorsuperconductor heterostructures,Phys. Rev. B 87, 060502(R) (2013)
[49]
P. Ghosh, J. D. Sau, S. Tewari, and S. Das Sarma, Non-Abelian topological order in noncentrosymmetric superconductors with broken time-reversal symmetry, Phys. Rev. B 82(18), 184525 (2010)
CrossRef ADS Google scholar
[50]
P. Fulde and R. A. Ferrell, Superconductivity in a strong spin-exchange field, Phys. Rev. 135(3A), A550 (1964)
CrossRef ADS Google scholar
[51]
G. Koutroulakis, H. Kühne, J. A. Schlueter, J. Wosnitza, and S. E. Brown, Microscopic study of the Fulde–Ferrell– Larkin–Ovchinnikov state in an all-organic superconductor, Phys. Rev. Lett. 116(6), 067003 (2016)
CrossRef ADS Google scholar
[52]
H. Maya, S. Krämer, M. Horvatić, C. Berthier, K. Miyagawa, K. Kanoda, and V. F. Mitrović, Evidence of Andreev bound states as a hallmark of the FFLO phase in κ-(BEDT-TTF)2Cu(NCS)2, Nat. Phys. 10, 928 (2014)
[53]
J. Wosnitza, FFLO states in layered organic superconductors, Ann. Phys. 530(2), 1700282 (2018)
CrossRef ADS Google scholar
[54]
Y. W. Guo and Y. Chen, Topological Fulde–Ferrell and Larkin–Ovchinnikov states in spin-orbit-coupled lattice system, Front. Phys. 13, 137402 (2018)
CrossRef ADS Google scholar
[55]
W. Chen, M. Gong, R. Shen, and D. Y. Xing, Detecting Fulde–Ferrell superconductors by an Andreev interferometer, New J. Phys. 16(8), 083024 (2014)
CrossRef ADS Google scholar
[56]
C. F. Chan and M. Gong, Pairing symmetry, phase diagram, and edge modes in the topological Fulde–Ferrell– Larkin–Ovchinnikov phase, Phys. Rev. B 89(17), 174501 (2014)
CrossRef ADS Google scholar
[57]
C. L. Qu, Z. Zheng, M. Gong, Y. Xu, L. Mao, X. B. Zou, G. C. Guo, and C. W. Zhang, Topological superfluids with finite-momentum pairing and Majorana fermions, Nat. Commun. 4(1), 2710 (2013)
CrossRef ADS Google scholar
[58]
W. Zhang and W. Yi, Topological Fulde–Ferrell–Larkin–Ovchinnikov states in spin–orbit-coupled Fermi gases, Nat. Commun. 4(1), 2711 (2013)
CrossRef ADS Google scholar
[59]
I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, Band parameters for III–V compound semiconductors and their alloys, J. Appl. Phys. 89(11), 5815 (2001)
CrossRef ADS Google scholar
[60]
J. P. Heida, B. J. vanWees, J. J. Kuipers, T. M. Klapwijk, and G. Borghs, Spin-orbit interaction in a two-dimensional electron gas in a InAs/AlSb quantum well with gate-controlled electron density, Phys. Rev. B 57(19), 11911 (1998)
CrossRef ADS Google scholar
[61]
V. A. Guzenko, A. Bringer, J. Knobbe, H. Hardtdegen, and TH. Schäpers, Rashba effect in GaxIn1–xAs/InP quantum wire structures, Appl. Phys. A Mater. Sci. Process. 87(3), 577 (2007)
CrossRef ADS Google scholar
[62]
W. A. Zein, N. A. Ibrahim, and A. H. Phillips, Spin polarized transport in an AC-driven quantum curved nanowire, Phys. Res. Int. 2011, 505091 (2011)
CrossRef ADS Google scholar
[63]
TH. Schäpers, V. A. Guzenko, A. Bringer, M. Akabori, M. Hagedorn, and H. Hardtdegen, Spin–orbit coupling in GaxIn1–xAs/InP two-dimensional electron gases and quantum wire structures, Semicond. Sci. Technol. 24(6), 064001 (2009)
CrossRef ADS Google scholar
[64]
J. G. Powles, B. Holtz, and W. A. B. Evans, New method for determining the chemical potential for condensed matter at high density, J. Chem. Phys. 101(9), 7804 (1994)
CrossRef ADS Google scholar
[65]
Z. Wilamowski, W. Jantsch, H. Malissa, and U. Rössler, Evidence and evaluation of the Bychkov–Rashba effect in SiGe/Si/SiGe quantum wells, Phys. Rev. B 66(19), 195315 (2002)
CrossRef ADS Google scholar
[66]
J. Luo, H. Munekata, F. F. Fang, and P. J. Stiles, Observation of the zero-field spin splitting of the ground electron subband in GaSb-InAs-GaSb quantum wells, Phys. Rev. B 38, 10142(R) (1988)
[67]
S. Lamari, Rashba effect in inversion layers on p-type InAs MOSFET’s, Phys. Rev. B 64(24), 245340 (2001)
CrossRef ADS Google scholar
[68]
K. L. Litvinenko, L. Nikzad, C. R. Pidgeon, J. Allam, L. F. Cohen, T. Ashley, M. Emeny, W. Zawadzki, and B. N. Murdin, Temperature dependence of the electron Landé g factor in InSb and GaAs, Phys. Rev. B 77(3), 033204 (2008)
CrossRef ADS Google scholar
[69]
M. Oestreich and W. Rühle, Temperature dependence of the electron Landé gfactor in GaAs, Phys. Rev. Lett. 74(12), 2315 (1995)
CrossRef ADS Google scholar
[70]
R. Zielke, F. Maier, and D. Loss, Anisotropic gfactor in InAs self-assembled quantum dots, Phys. Rev. B 89(11), 115438 (2014)
CrossRef ADS Google scholar
[71]
S. Åsbrink and A. Waśkowska, Pressure-induced critical behavior of KMnF3 close to Pc= 3.1 GPa: X-ray diffraction results, Phys. Rev. B 53, 12 (1996)
CrossRef ADS Google scholar
[72]
C. Hermann and C. Weisbuch, k→·p→perturbation theory in III-V compounds and alloys: A reexamination, Phys. Rev. B 15(2), 823 (1977)
CrossRef ADS Google scholar
[73]
Z. W. Zheng, B. Shen, Y. S. Gui, Z. J. Qiu, C. P. Jiang, N. Tang, J. Liu, D. J. Chen, H. M. Zhou, R. Zhang, Y. Shi, Y. D. Zheng, S. L. Guo, J. H. Chu, K. Hoshino, and Y. Arakawa, Enhancement and anisotropy of the Landau gfactor in modulation-doped Al0.22Ga0.78N/GaN heterostructures, J. Appl. Phys. 95(5), 2473 (2004)
CrossRef ADS Google scholar
[74]
F. Maier, C. Klöffel, and D. Loss, Tunable g factor and phonon-mediated hole spin relaxation in Ge/Si nanowire quantum dots, Phys. Rev. B 87, 161305(R) (2013)
[75]
H. Kosaka, A. Kiselev, F. Baron, K. W. Kim, and E. Yablonovitch, Electron g factor engineering in III-V semiconductors for quantum communications, Electron. Lett. 37(7), 464 (2001)
CrossRef ADS Google scholar
[76]
A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Classification of topological insulators and superconductors in three spatial dimensions, Phys. Rev. B 78(19), 195125 (2008)
CrossRef ADS Google scholar
[77]
J. F. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, and C. M. Lieber, Highly polarized photoluminescence and photodetection from single indium phosphide nanowires, Science 293(5534), 1455 (2001)
CrossRef ADS Google scholar
[78]
K. Storm, F. Halvardsson, M. Heurlin, D. Lindgren, A. Gustafsson, P. M. Wu, B. Monemar, and L. Samuelson, Spatially resolved Hall effect measurement in a single semiconductor nanowire, Nat. Nanotechnol. 7(11), 718 (2012)
CrossRef ADS Google scholar
[79]
D. Liang and X. P. A. Gao, Strong tuning of spin orbit interaction in an InAs nanowire by surrounding gate, Nano Lett. 12, 6 (2012)
CrossRef ADS Google scholar
[80]
J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.4As heterostructure, Phys. Rev. Lett. 78(7), 1335 (1997)
CrossRef ADS Google scholar
[81]
X. W. Zhang and J. B. Xia, Rashba spin-orbit coupling in InSb nanowires under transverse electric field, Phys. Rev. B 74(7), 075304 (2006)
CrossRef ADS Google scholar
[82]
The topological gapless phase III is still topological protected because it is impossible to adiabatically tune this phase to a trivial phase without closes the energy gap at zero momentum, see ReF. [56].
[83]
DetHBdG(kx) = A22k2x , where A=h¯x2+h¯y2−k4/(4m*2)−Δ2−μ¯2+k2(α2+μ/m*), so the energy gap can close only at the critical boundary; see also discussion in ReF. [22].
[84]
R. M. Lutchyn, T. D. Stanescu, and S. Das Sarma, Search for Majorana fermions in multiband semiconducting nanowires, Phys. Rev. Lett. 106(12), 127001 (2011)
CrossRef ADS Google scholar
[85]
S. K. Yip, Two-dimensional superconductivity with strong spin-orbit interaction, Phys. Rev. B 65(14), 144508 (2002)
CrossRef ADS Google scholar
[86]
D. F. Agterberg, Novel magnetic field effects in unconventional superconductors, Physica C 387(1–2), 13 (2003)
CrossRef ADS Google scholar
[87]
O. Dimitrova and M. V. Feigel’man, Theory of a twodimensional superconductor with broken inversion symmetry, Phys. Rev. B 76(1), 014522 (2007)
CrossRef ADS Google scholar
[88]
D. F. Agterberg and R. P. Kaur, Magnetic-field-induced helical and stripe phases in Rashba superconductors, Phys. Rev. B 75(6), 064511 (2007)
CrossRef ADS Google scholar
[89]
Z. Zheng, M. Gong, X. B. Zou, C. W. Zhang, and G. C. Guo, Route to observable Fulde-Ferrell-Larkin- Ovchinnikov phases in three-dimensional spin-orbitcoupled degenerate Fermi gases, Phys. Rev. A 87(3), 031602 (2013)
CrossRef ADS Google scholar
[90]
Z. Zheng, M. Gong, Y. C. Zhang, X. B. Zou, C. W. Zhang, and G. C. Guo, FFLO superfluids in 2D spin-orbit coupled Fermi Gases, Sci. Rep. 4(1), 6535 (2015)
CrossRef ADS Google scholar
[91]
A. I. Larkin and Y. N. Ovchinnikov, Nonuniform state of superconductors, Zh. Eksp. Teor. Fiz. 47, 1136 (1964)

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
PDF(12294 KB)

Accesses

Citations

Detail

Sections
Recommended

/