Evolution of a two-mode squeezed vacuum for amplitude decay via continuous-variable entangled state approach

Xiang-Guo Meng, Ji-Suo Wang, Bao-Long Liang, Cheng-Xuan Han

PDF(4882 KB)
PDF(4882 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (5) : 130322. DOI: 10.1007/s11467-018-0856-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Evolution of a two-mode squeezed vacuum for amplitude decay via continuous-variable entangled state approach

Author information +
History +

Abstract

Extending the recent work completed by Fan et al. [Front. Phys. 9(1), 74 (2014)] to a two-mode case, we investigate how a two-mode squeezed vacuum evolves when it undergoes a two-mode amplitude dissipative channel, with the same decay rate κ, using the continuous-variable entangled state approach. Our analytical results show that the initial pure-squeezed vacuum state evolves into a definite mixed state with entanglement and squeezing, decaying over time as a result of amplitude decay. We also investigate the time evolutions of the photon number distribution, the Wigner function, and the optical tomogram in this channel. Our results indicate that the evolved photon number distribution is related to Jacobi polynomials, the Wigner function has a standard Gaussian distribution (corresponding to the vacuum) at long periods, losing its nonclassicality due to amplitude decay, and a larger squeezing leads to a longer decay time.

Keywords

two-mode squeezed vacuum / amplitude decay / continuous-variable entangled state representation / photon number distribution / Wigner function / optical tomogram

Cite this article

Download citation ▾
Xiang-Guo Meng, Ji-Suo Wang, Bao-Long Liang, Cheng-Xuan Han. Evolution of a two-mode squeezed vacuum for amplitude decay via continuous-variable entangled state approach. Front. Phys., 2018, 13(5): 130322 https://doi.org/10.1007/s11467-018-0856-1

References

[1]
C. W. Gardner and P. Zoller, Quantum Noise, Berlin: Spinger, 2000
[2]
X. Y. Chen, Simultaneous amplitude and phase damping of x–psymmetric Gaussian states and their separability, Phys. Rev. A 73(2), 022307 (2006)
CrossRef ADS Google scholar
[3]
D. Boyanovsky, Effective field theory during inflation: Reduced density matrix and its quantum master equation, Phys. Rev. D 92(2), 023527 (2015)
CrossRef ADS Google scholar
[4]
L. Ferialdi, Exact non-Markovian master equation for the spin-boson and Jaynes-Cummings models, Phys. Rev. A 95(2), 020101(R) (2017)
[5]
H. Y. Fan and L. Y. Hu, Operator-sum representation of density operators as solutions to master equations obtained via the entangled state approach, Mod. Phys. Lett. B 22(25), 2435 (2008)
CrossRef ADS Google scholar
[6]
Y. Takahashi and H. Umezawa, Thermo field dynamics, Collect. Phenom. 2, 55 (1975)
[7]
H. Y. Fan and L. Y. Hu, New approach for analyzing time evolution of density operator in a dissipative channel by the entangled state representation, Opt. Commun. 281(22), 5571 (2008)
CrossRef ADS Google scholar
[8]
X. G. Meng, H. S. Goan, J. S. Wang, and R. Zhang, Nonclassical thermal-state superpositions: Analytical evolution law and decoherence behavior, Opt. Commun. 411(3), 15 (2018)
CrossRef ADS Google scholar
[9]
X. G. Meng, Z. Wang, H. Y. Fan, and J. S. Wang, Nonclassicality and decoherence of photon-subtracted squeezed vacuum states, J. Opt. Soc. Am. B 29(11), 3141 (2012)
CrossRef ADS Google scholar
[10]
H. Y. Fan, S. Wang, and L. Y. Hu, Evolution of the singlemode squeezed vacuum state in amplitude dissipative channel, Front. Phys. 9(1), 74 (2014)
CrossRef ADS Google scholar
[11]
R. He, J. H. Chen, and H. Y. Fan, Evolution law of Wigner function in laser process, Front. Phys. 8(4), 381 (2013)
CrossRef ADS Google scholar
[12]
C. J. Liu, W. Ye, W. D. Zhou, H. L. Zhang, J. H. Huang, and L. Y. Hu, Entanglement of coherent superposition of photon-subtraction squeezed vacuum, Front. Phys. 12(5), 120307 (2017)
CrossRef ADS Google scholar
[13]
S. L. Braunstein and H. J. Kimble, Teleportation of continuous quantum variables, Phys. Rev. Lett. 80(4), 869 (1998)
CrossRef ADS Google scholar
[14]
P. M. Anisimov, G. M. Raterman, A. Chiruvelli, W. N. Plick, S. D. Huver, H. Lee, and J. P. Dowling, Quantum metrology with two-mode squeezed vacuum: parity detection beats the Heisenberg limit, Phys. Rev. Lett. 104(10), 103602 (2010)
CrossRef ADS Google scholar
[15]
H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, Quantum repeaters: The role of imperfect local operations in quantum communication, Phys. Rev. Lett. 81(26), 5932 (1998)
CrossRef ADS Google scholar
[16]
F. Jia, S. Xu, C. Z. Deng, C. J. Liu, and L.Y. Hu, L. Y. Hu, 3D entangled fractional squeezing transformation and its quantum mechanical correspondence, Front. Phys. 11(3), 110302 (2016)
CrossRef ADS Google scholar
[17]
H. Y. Fan and Y. Fan, New representation for thermo excitation and de-excitation in thermofield dynamics,Phys. Lett. A 282(4–5), 269 (2001)
CrossRef ADS Google scholar
[18]
K. M. Zheng, S. Y. Liu, H. L. Zhang, C. J. Liu, and L. Y. Hu, A generalized two-mode entangled state: Its generation, properties, and applications, Front. Phys. 9(4), 451 (2014)
CrossRef ADS Google scholar
[19]
N. R. Zhou, J. F. Li, Z. B. Yu, L. H. Gong, and A. Farouk, New quantum dialogue protocol based on continuous-variable two-mode squeezed vacuum states, Quantum Inform. Process. 16(1), 4 (2017)
CrossRef ADS Google scholar
[20]
Z. X. Huang, K. R. Motes, P. M. Anisimov, J. P. Dowling, and D. W. Berry, Adaptive phase estimation with two-mode squeezed vacuum and parity measurement, Phys. Rev. A 95(5), 053837 (2017)
CrossRef ADS Google scholar
[21]
T. Opatrný, G. Kurizki, and D. G. Welsch, Improvement on teleportation of continuous variables by photon subtraction via conditional measurement, Phys. Rev. A 61(3), 032302 (2000)
CrossRef ADS Google scholar
[22]
J. P. Olson, K. P. Seshadreesan, K. R. Motes, P. P. Rohde, and J. P. Dowling, Sampling arbitrary photonadded or photon-subtracted squeezed states is in the same complexity class as boson sampling, Phys. Rev. A 91(2), 022317 (2015)
CrossRef ADS Google scholar
[23]
W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Berlin: Springer, 1966
CrossRef ADS Google scholar
[24]
H. Y. Fan and J. R. Klauder, Eigenvectors of two particles’ relative position and total momentum, Phys. Rev. A 49(2), 704 (1994)
CrossRef ADS Google scholar
[25]
Y. Z. Li, F. Jia, H. L. Zhang, J. H. Huang, and L. Y. Hu, Hermite polynomial excited squeezed vacuum as quantum optical vortex states, Laser Phys. Lett. 12(11), 115203 (2015)
CrossRef ADS Google scholar
[26]
S. Y. Liu, Y. Z. Li, L. Y. Hu, J. H. Huang, X. X. Xu, and X. Y. Tao, Nonclassical properties of Hermite polynomial excitation on squeezed vacuum and its decoherence in phase-sensitive reservoirs, Laser Phys. Lett. 12(4), 045201 (2015)
CrossRef ADS Google scholar
[27]
H. L. Zhang, H. C. Yuan, L. Y. Hu, and X. X. Xu, Synthesis of Hermite polynomial excited squeezed vacuum states from two separate single-mode squeezed vacuum states, Opt. Commun. 356(12), 223 (2015)
CrossRef ADS Google scholar
[28]
R. J. Glauber, Coherent and incoherent states of the radiation field, Phys. Rev. 131(6), 2766 (1963)
CrossRef ADS Google scholar
[29]
A. Wünsche, About integration within ordered products in quantum optics, J. Opt. B Quantum Semiclassical Opt. 1(3), R11 (1999)
CrossRef ADS Google scholar
[30]
H. Y. Fan and H. R. Zaidi, Application of IWOP technique to the generalized Weyl correspondence, Phys. Lett. A 124(6–7), 303 (1987)
CrossRef ADS Google scholar
[31]
J. S. Wang, H. Y. Fan, and X. G. Meng, A generalized Weyl–Wigner quantization scheme unifying P-Qand Q-Pordering and Weyl ordering of operators, Chin. Phys. B 21(6), 064204 (2012)
CrossRef ADS Google scholar
[32]
W. Schleich and J. A. Wheeler, Oscillations in photon distribution of squeezed states and interference in phase space, Nature 326(6113), 574 (1987)
CrossRef ADS Google scholar
[33]
L. Y. Hu, X. X. Xu, Z. S. Wang, and X. F. Xu, Photonsubtracted squeezed thermal state: Nonclassicality and decoherence, Phys. Rev. A 82(4), 043842 (2010)
CrossRef ADS Google scholar
[34]
H. Y. Fan, Entangled states, squeezed states gained via the route of developing Dirac’s symbolic method and their applications, Int. J. Mod. Phys. B 18(10&11), 1387 (2004)
CrossRef ADS Google scholar
[35]
X. G. Meng, J. S. Wang, and B. L. Liang, A new finitedimensional pair coherent state studied by virtue of the entangled state representation and its statistical behavior, Opt. Commun. 283(20), 4025 (2010)
CrossRef ADS Google scholar
[36]
X. G. Meng, Z. Wang, J. S. Wang, and H. Y. Fan, Wigner function, optical tomography of two-variable Hermite polynomial state, and its decoherence effects studied by the entangled-state representations, J. Opt. Soc. Am. B 30(6), 1614 (2013)
CrossRef ADS Google scholar
[37]
H. Y. Fan, J. H. Chen, and P. F. Zhang, On the entangled fractional squeezing transformation, Front. Phys. 10(2), 187 (2015)
CrossRef ADS Google scholar
[38]
H. Y. Fan, Operator ordering in quantum optics theory and the development of Dirac’s symbolic method, J. Opt. B Quantum Semiclassical Opt. 5(4), R147 (2003)
CrossRef ADS Google scholar
[39]
H. Y. Fan and G. C. Yu, Radon transformation of the Wigner operator for two-mode correlated system in generalized entangled state representation, Mod. Phys. Lett. B 15(07), 499 (2000)
CrossRef ADS Google scholar
AI Summary AI Mindmap
PDF(4882 KB)

Accesses

Citations

Detail

Sections
Recommended

/