Evolution of a two-mode squeezed vacuum for amplitude decay via continuous-variable entangled state approach
Xiang-Guo Meng, Ji-Suo Wang, Bao-Long Liang, Cheng-Xuan Han
Evolution of a two-mode squeezed vacuum for amplitude decay via continuous-variable entangled state approach
Extending the recent work completed by Fan et al. [Front. Phys. 9(1), 74 (2014)] to a two-mode case, we investigate how a two-mode squeezed vacuum evolves when it undergoes a two-mode amplitude dissipative channel, with the same decay rate κ, using the continuous-variable entangled state approach. Our analytical results show that the initial pure-squeezed vacuum state evolves into a definite mixed state with entanglement and squeezing, decaying over time as a result of amplitude decay. We also investigate the time evolutions of the photon number distribution, the Wigner function, and the optical tomogram in this channel. Our results indicate that the evolved photon number distribution is related to Jacobi polynomials, the Wigner function has a standard Gaussian distribution (corresponding to the vacuum) at long periods, losing its nonclassicality due to amplitude decay, and a larger squeezing leads to a longer decay time.
two-mode squeezed vacuum / amplitude decay / continuous-variable entangled state representation / photon number distribution / Wigner function / optical tomogram
[1] |
C. W. Gardner and P. Zoller, Quantum Noise, Berlin: Spinger, 2000
|
[2] |
X. Y. Chen, Simultaneous amplitude and phase damping of x–psymmetric Gaussian states and their separability, Phys. Rev. A 73(2), 022307 (2006)
CrossRef
ADS
Google scholar
|
[3] |
D. Boyanovsky, Effective field theory during inflation: Reduced density matrix and its quantum master equation, Phys. Rev. D 92(2), 023527 (2015)
CrossRef
ADS
Google scholar
|
[4] |
L. Ferialdi, Exact non-Markovian master equation for the spin-boson and Jaynes-Cummings models, Phys. Rev. A 95(2), 020101(R) (2017)
|
[5] |
H. Y. Fan and L. Y. Hu, Operator-sum representation of density operators as solutions to master equations obtained via the entangled state approach, Mod. Phys. Lett. B 22(25), 2435 (2008)
CrossRef
ADS
Google scholar
|
[6] |
Y. Takahashi and H. Umezawa, Thermo field dynamics, Collect. Phenom. 2, 55 (1975)
|
[7] |
H. Y. Fan and L. Y. Hu, New approach for analyzing time evolution of density operator in a dissipative channel by the entangled state representation, Opt. Commun. 281(22), 5571 (2008)
CrossRef
ADS
Google scholar
|
[8] |
X. G. Meng, H. S. Goan, J. S. Wang, and R. Zhang, Nonclassical thermal-state superpositions: Analytical evolution law and decoherence behavior, Opt. Commun. 411(3), 15 (2018)
CrossRef
ADS
Google scholar
|
[9] |
X. G. Meng, Z. Wang, H. Y. Fan, and J. S. Wang, Nonclassicality and decoherence of photon-subtracted squeezed vacuum states, J. Opt. Soc. Am. B 29(11), 3141 (2012)
CrossRef
ADS
Google scholar
|
[10] |
H. Y. Fan, S. Wang, and L. Y. Hu, Evolution of the singlemode squeezed vacuum state in amplitude dissipative channel, Front. Phys. 9(1), 74 (2014)
CrossRef
ADS
Google scholar
|
[11] |
R. He, J. H. Chen, and H. Y. Fan, Evolution law of Wigner function in laser process, Front. Phys. 8(4), 381 (2013)
CrossRef
ADS
Google scholar
|
[12] |
C. J. Liu, W. Ye, W. D. Zhou, H. L. Zhang, J. H. Huang, and L. Y. Hu, Entanglement of coherent superposition of photon-subtraction squeezed vacuum, Front. Phys. 12(5), 120307 (2017)
CrossRef
ADS
Google scholar
|
[13] |
S. L. Braunstein and H. J. Kimble, Teleportation of continuous quantum variables, Phys. Rev. Lett. 80(4), 869 (1998)
CrossRef
ADS
Google scholar
|
[14] |
P. M. Anisimov, G. M. Raterman, A. Chiruvelli, W. N. Plick, S. D. Huver, H. Lee, and J. P. Dowling, Quantum metrology with two-mode squeezed vacuum: parity detection beats the Heisenberg limit, Phys. Rev. Lett. 104(10), 103602 (2010)
CrossRef
ADS
Google scholar
|
[15] |
H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, Quantum repeaters: The role of imperfect local operations in quantum communication, Phys. Rev. Lett. 81(26), 5932 (1998)
CrossRef
ADS
Google scholar
|
[16] |
F. Jia, S. Xu, C. Z. Deng, C. J. Liu, and L.Y. Hu, L. Y. Hu, 3D entangled fractional squeezing transformation and its quantum mechanical correspondence, Front. Phys. 11(3), 110302 (2016)
CrossRef
ADS
Google scholar
|
[17] |
H. Y. Fan and Y. Fan, New representation for thermo excitation and de-excitation in thermofield dynamics,Phys. Lett. A 282(4–5), 269 (2001)
CrossRef
ADS
Google scholar
|
[18] |
K. M. Zheng, S. Y. Liu, H. L. Zhang, C. J. Liu, and L. Y. Hu, A generalized two-mode entangled state: Its generation, properties, and applications, Front. Phys. 9(4), 451 (2014)
CrossRef
ADS
Google scholar
|
[19] |
N. R. Zhou, J. F. Li, Z. B. Yu, L. H. Gong, and A. Farouk, New quantum dialogue protocol based on continuous-variable two-mode squeezed vacuum states, Quantum Inform. Process. 16(1), 4 (2017)
CrossRef
ADS
Google scholar
|
[20] |
Z. X. Huang, K. R. Motes, P. M. Anisimov, J. P. Dowling, and D. W. Berry, Adaptive phase estimation with two-mode squeezed vacuum and parity measurement, Phys. Rev. A 95(5), 053837 (2017)
CrossRef
ADS
Google scholar
|
[21] |
T. Opatrný, G. Kurizki, and D. G. Welsch, Improvement on teleportation of continuous variables by photon subtraction via conditional measurement, Phys. Rev. A 61(3), 032302 (2000)
CrossRef
ADS
Google scholar
|
[22] |
J. P. Olson, K. P. Seshadreesan, K. R. Motes, P. P. Rohde, and J. P. Dowling, Sampling arbitrary photonadded or photon-subtracted squeezed states is in the same complexity class as boson sampling, Phys. Rev. A 91(2), 022317 (2015)
CrossRef
ADS
Google scholar
|
[23] |
W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Berlin: Springer, 1966
CrossRef
ADS
Google scholar
|
[24] |
H. Y. Fan and J. R. Klauder, Eigenvectors of two particles’ relative position and total momentum, Phys. Rev. A 49(2), 704 (1994)
CrossRef
ADS
Google scholar
|
[25] |
Y. Z. Li, F. Jia, H. L. Zhang, J. H. Huang, and L. Y. Hu, Hermite polynomial excited squeezed vacuum as quantum optical vortex states, Laser Phys. Lett. 12(11), 115203 (2015)
CrossRef
ADS
Google scholar
|
[26] |
S. Y. Liu, Y. Z. Li, L. Y. Hu, J. H. Huang, X. X. Xu, and X. Y. Tao, Nonclassical properties of Hermite polynomial excitation on squeezed vacuum and its decoherence in phase-sensitive reservoirs, Laser Phys. Lett. 12(4), 045201 (2015)
CrossRef
ADS
Google scholar
|
[27] |
H. L. Zhang, H. C. Yuan, L. Y. Hu, and X. X. Xu, Synthesis of Hermite polynomial excited squeezed vacuum states from two separate single-mode squeezed vacuum states, Opt. Commun. 356(12), 223 (2015)
CrossRef
ADS
Google scholar
|
[28] |
R. J. Glauber, Coherent and incoherent states of the radiation field, Phys. Rev. 131(6), 2766 (1963)
CrossRef
ADS
Google scholar
|
[29] |
A. Wünsche, About integration within ordered products in quantum optics, J. Opt. B Quantum Semiclassical Opt. 1(3), R11 (1999)
CrossRef
ADS
Google scholar
|
[30] |
H. Y. Fan and H. R. Zaidi, Application of IWOP technique to the generalized Weyl correspondence, Phys. Lett. A 124(6–7), 303 (1987)
CrossRef
ADS
Google scholar
|
[31] |
J. S. Wang, H. Y. Fan, and X. G. Meng, A generalized Weyl–Wigner quantization scheme unifying P-Qand Q-Pordering and Weyl ordering of operators, Chin. Phys. B 21(6), 064204 (2012)
CrossRef
ADS
Google scholar
|
[32] |
W. Schleich and J. A. Wheeler, Oscillations in photon distribution of squeezed states and interference in phase space, Nature 326(6113), 574 (1987)
CrossRef
ADS
Google scholar
|
[33] |
L. Y. Hu, X. X. Xu, Z. S. Wang, and X. F. Xu, Photonsubtracted squeezed thermal state: Nonclassicality and decoherence, Phys. Rev. A 82(4), 043842 (2010)
CrossRef
ADS
Google scholar
|
[34] |
H. Y. Fan, Entangled states, squeezed states gained via the route of developing Dirac’s symbolic method and their applications, Int. J. Mod. Phys. B 18(10&11), 1387 (2004)
CrossRef
ADS
Google scholar
|
[35] |
X. G. Meng, J. S. Wang, and B. L. Liang, A new finitedimensional pair coherent state studied by virtue of the entangled state representation and its statistical behavior, Opt. Commun. 283(20), 4025 (2010)
CrossRef
ADS
Google scholar
|
[36] |
X. G. Meng, Z. Wang, J. S. Wang, and H. Y. Fan, Wigner function, optical tomography of two-variable Hermite polynomial state, and its decoherence effects studied by the entangled-state representations, J. Opt. Soc. Am. B 30(6), 1614 (2013)
CrossRef
ADS
Google scholar
|
[37] |
H. Y. Fan, J. H. Chen, and P. F. Zhang, On the entangled fractional squeezing transformation, Front. Phys. 10(2), 187 (2015)
CrossRef
ADS
Google scholar
|
[38] |
H. Y. Fan, Operator ordering in quantum optics theory and the development of Dirac’s symbolic method, J. Opt. B Quantum Semiclassical Opt. 5(4), R147 (2003)
CrossRef
ADS
Google scholar
|
[39] |
H. Y. Fan and G. C. Yu, Radon transformation of the Wigner operator for two-mode correlated system in generalized entangled state representation, Mod. Phys. Lett. B 15(07), 499 (2000)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |