Probing interlayer interactions in WSe2-graphene heterostructures by ultralow-frequency Raman spectroscopy

Yue Liu (刘月), Yu Zhou (周煜), Hao Zhang (张昊), Feirong Ran (冉飞荣), Weihao Zhao (赵炜昊), Lin Wang (王琳), Chengjie Pei (裴成杰), Jindong Zhang (张锦东), Xiao Huang (黄晓), Hai Li (李海)

PDF(9649 KB)
PDF(9649 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (1) : 13607. DOI: 10.1007/s11467-018-0854-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Probing interlayer interactions in WSe2-graphene heterostructures by ultralow-frequency Raman spectroscopy

Author information +
History +

Abstract

Interlayer interactions at the heterointerfaces of van der Waals heterostructures (vdWHs), which consist of vertically stacked two-dimensional materials, play important roles in determining their properties. The interlayer interactions are tunable from noncoupling to strong coupling by controlling the twist angle between adjacent layers. However, the influence of stacking sequence and individual component thickness on the properties of vdWHs has rarely been explored. In this work, the influence of the stacking sequence of WSe2 and graphene in vdWHs of graphene-on-WSe2 (graphene/WSe2) or WSe2-on-graphene (WSe2/graphene), as well as their thickness, on their interlayer interaction was systematically investigated by ultralow-frequency (ULF) Raman spectroscopy. A series of ULF breathing modes of WSe2 nanosheets in these vdWHs were observed with frequencies highly dependent on graphene thickness. Interestingly, the ULF breathing modes of WSe2 red-shifted in graphene/WSe2 and WSe2/graphene configurations, and the amount of shift in the former was much larger than that in the latter. In contrast, no obvious ULF shift was observed by varying the twist angle between WSe2 and graphene. This indicates that the interlayer interaction is more sensitive to the stacking sequence compared with the twist angle. The results provide alternative approaches to modulate the interlayer interaction of vdWHs and, thus, tune their optical and optoelectronic properties.

Keywords

interlayer interaction / van der Waals heterostructures / two-dimensional materials / stacking sequence / ultralow-frequency Raman breathing mode

Cite this article

Download citation ▾
Yue Liu (刘月), Yu Zhou (周煜), Hao Zhang (张昊), Feirong Ran (冉飞荣), Weihao Zhao (赵炜昊), Lin Wang (王琳), Chengjie Pei (裴成杰), Jindong Zhang (张锦东), Xiao Huang (黄晓), Hai Li (李海). Probing interlayer interactions in WSe2-graphene heterostructures by ultralow-frequency Raman spectroscopy. Front. Phys., 2019, 14(1): 13607 https://doi.org/10.1007/s11467-018-0854-3

References

[1]
P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. F. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Q. Yan, D. G. Mandrus, W. Yao, and X. D. Xu, Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures, Nat. Commun. 6(1), 6242 (2015)
CrossRef ADS Google scholar
[2]
A. Azizi, S. Eichfeld, G. Geschwind, K. Zhang, B. Jiang, D. Mukherjee, L. Hossain, A. F. Piasecki, B. Kabius, J. A. Robinson, and N. Alem, Freestanding van der Waals heterostructures of graphene and transition metal dichalcogenides, ACS Nano 9(5), 4882 (2015)
CrossRef ADS Google scholar
[3]
M. H. Chiu, M. Y. Li, W. Zhang, W. T. Hsu, W. H. Chang, M. Terrones, H. Terrones, and L. J. Li, Spectroscopic signatures for interlayer coupling in MoS2-WSe2 van der Waals stacking, ACS Nano 8(9), 9649 (2014)
CrossRef ADS Google scholar
[4]
H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Martin, A. M. Minor, C. S. Fadley, E. Yablonovitch, R. Maboudian, and A. Javey, Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides, Proc. Natl. Acad. Sci. USA 111(17), 6198 (2014)
CrossRef ADS Google scholar
[5]
A. Nourbakhsh, A. Zubair, M. S. Dresselhaus, and T. Palacios, Transport properties of a MoS2/WSe2 heterojunction transistor and its potential for application, Nano Lett. 16(2), 1359 (2016)
CrossRef ADS Google scholar
[6]
J. H. Yu, H. R. Lee, S. S. Hong, D. Kong, H. W. Lee, H. Wang, F. Xiong, S. Wang, and Y. Cui, Vertical heterostructure of two-dimensional MoS2 and WSe2 with vertically aligned layers, Nano Lett. 15(2), 1031 (2015)
CrossRef ADS Google scholar
[7]
C. H. Lee, G. H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, Atomically thin p-n junctions with van der Waals heterointerfaces, Nat. Nanotechnol. 9(9), 676 (2014)
CrossRef ADS Google scholar
[8]
L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, Fieldeffect tunneling transistor based on vertical graphene heterostructures, Science 335(6071), 947 (2012)
CrossRef ADS Google scholar
[9]
W. J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, and X. Duan, Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials, Nat. Nanotechnol. 8(12), 952 (2013)
CrossRef ADS Google scholar
[10]
H. Xu, J. Wu, Q. Feng, N. Mao, C. Wang, and J. Zhang, High responsivity and gate tunable graphene-MoS2 hybrid phototransistor, Small 10(11), 2300 (2014)
CrossRef ADS Google scholar
[11]
H. Li, J. B. Wu, F. Ran, M. L. Lin, X. L. Liu, Y. Zhao, X. Lu, Q. Xiong, J. Zhang, W. Huang, H. Zhang, and P. H. Tan, Interfacial interactions in van der Waals heterostructures of MoS2 and graphene, ACS Nano 11(11), 11714 (2017)
CrossRef ADS Google scholar
[12]
Y. C. Lin, C. Y. Chang, R. K. Ghosh, J. Li, H. Zhu, R. Addou, B. Diaconescu, T. Ohta, X. Peng, N. Lu, M. J. Kim, J. T. Robinson, R. M. Wallace, T. S. Mayer, S. Datta, L. J. Li, and J. A. Robinson, Atomically thin heterostructures based on single-layer tungsten diselenide and graphene, Nano Lett. 14(12), 6936 (2014)
CrossRef ADS Google scholar
[13]
Q. Z. Li, L. P. Tang, C. X. Zhang, D. Wang, Q. J. Chen, Y. X. Feng, L. M. Tang, and K. Q. Chen, Seeking the dirac cones in the MoS2/WSe2 van der Waals heterostructure, Appl. Phys. Lett. 111(17), 171602 (2017)
CrossRef ADS Google scholar
[14]
F. Ullah, Y. Sim, C. T. Le, M. J. Seong, J. I. Jang, S. H. Rhim, B. C. Tran Khac, K. H. Chung, K. Park, Y. Lee, K. Kim, H. Y. Jeong, and Y. S. Kim, Growth and simultaneous valleys manipulation of two-dimensional MoSe2- WSe2 lateral heterostructure, ACS Nano 11(9), 8822 (2017)
CrossRef ADS Google scholar
[15]
C. Chakraborty, L. Y. Qiu, K. Konthasinghe, A. Mukherjee, S. Dhara, and N. Vamivakas, 3D Localized Trions in Monolayer WSe2 in a Charge Tunable van der Waals Heterostructure, Nano Lett. 18(5), 2859 (2018)
CrossRef ADS Google scholar
[16]
K. W. Tang, W. H. Qi, Y. J. Li, and T. R. Wang, Electronic properties of van der Waals heterostructure of black phosphorus and MoS2, J. Phys. Chem. C 122(12), 7027 (2018)
CrossRef ADS Google scholar
[17]
J. G. Roch, N. Leisgang, G. Froehlicher, P. Makk, K. Watanabe, T. Taniguchi, C. Schonenberger, and R. J. Warburton, Quantum-confined stark effect in a MoS2 monolayer van der Waals heterostructure, Nano Lett. 18(2), 1070 (2018)
CrossRef ADS Google scholar
[18]
M. Okada, A. Kutana, Y. Kureishi, Y. Kobayashi, Y. Saito, T. Saito, K. Watanabe, T. Taniguchi, S. Gupta, Y. Miyata, B. I. Yakobson, H. Shinohara, and R. Kitaura, Direct and indirect interlayer excitons in a van der Waals heterostructure of hBN/WS2/MoS2/hBN, ACS Nano 12(3), 2498 (2018)
CrossRef ADS Google scholar
[19]
X. R. Hu, J. M. Zheng, and Z. Y. Ren, Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation, Front. Phys. 13(2), 137302 (2018)
CrossRef ADS Google scholar
[20]
A. T. Hanbicki, H. J. Chuang, M. R. Rosenberger, C. S. Hellberg, S. V. Sivaram, K. M. McCreary, I. I. Mazin, and B. T. Jonker, Double indirect interlayer exciton in a MoSe2/WSe2 van der Waals heterostructure, ACS Nano 12(5), 4719 (2018)
CrossRef ADS Google scholar
[21]
T. Deilmann and K. S. Thygesen, Interlayer trions in the MoS2/WS2 van der Waals heterostructure, Nano Lett. 18(2), 1460 (2018)
CrossRef ADS Google scholar
[22]
H. Yuan and Z. Li, Interfacial properties of black phosphorus/ transition metal carbide van der Waals heterostructures, Front. Phys. 13(3), 138103 (2018)
CrossRef ADS Google scholar
[23]
Z. Z. Yan, Z. H. Jiang, J. P. Lu, and Z. H. Ni, Interfacial charge transfer in WS2 monolayer/CsPbBr3 microplate heterostructure, Front. Phys. 13(4), 138115 (2018)
CrossRef ADS Google scholar
[24]
T. C. Song, X. H. Cai, M. W. Y. Tu, X. O. Zhang, B. V. Huang, N. P. Wilson, K. L. Seyler, L. Zhu, T. Taniguchi, K. Watanabe, M. A. McGuire, D. H. Cobden, D. Xiao, W. Yao, and X. D. Xu, Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures, Science 360(6394), 1214 (2018)
CrossRef ADS Google scholar
[25]
R. Cheng, F. Wang, L. Yin, Z. Wang, Y. Wen, T. A. Shifa, and J. He, High-performance, multifunctional devices based on asymmetric van der Waals heterostructures, Nat. Electron. 1(6), 356 (2018)
CrossRef ADS Google scholar
[26]
X. W. Zhang, D. W. He, J. Q. He, S. Q. Zhao, S. C. Hao, Y. S. Wang, and L. X. Yi, Ultrafast interlayer photocarrier transfer in graphene-MoSe2 van der Waals heterostructure, Chin. Phys. B 26(9), 097202(2017)
CrossRef ADS Google scholar
[27]
Y. Chen, Z. X. Fan, Z. C. Zhang, W. X. Niu, C. L. Li, N. L. Yang, B. Chen, and H. Zhang, Two-dimensional metal nanomaterials: Synthesis, properties, and applications, Chem. Rev. 118(13), 6409 (2018)
CrossRef ADS Google scholar
[28]
H. Li, L. Ye, and J. B. Xu, High-performance broadband floating-base bipolar phototransistor based on WSe2/BP/MoS2 heterostructure, ACS Photon. 4(4), 823 (2017)
CrossRef ADS Google scholar
[29]
Z. Q. Li, C. Cheng, N. N. Dong, C. Romero, Q. M. Lu, J. Wang, J. R. V. de Aldana, Y. Tan, and F. Chen, Q-switching of waveguide lasers based on graphene/WS2 van der Waals heterostructure, Photon. Res. 5(5), 406 (2017)
CrossRef ADS Google scholar
[30]
Y. Liu, B. N. Shivananju, Y. S. Wang, Y. P. Zhang, W. Z. Yu, S. Xiao, T. Sun, W. L. Ma, H. R. Mu, S. H. Lin, H. Zhang, Y. R. Lu, C. W. Qiu, S. J. Li, and Q. L. Bao, Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure, ACS Appl. Mater. Interfaces 9(41), 36137 (2017)
CrossRef ADS Google scholar
[31]
M. Will, M. Hamer, M. Muller, A. Noury, P. Weber, A. Bachtold, R. V. Gorbachev, C. Stampfer, and J. Guttinger, High quality factor graphene-based twodimensional heterostructure mechanical resonator, Nano Lett. 17(10), 5950 (2017)
CrossRef ADS Google scholar
[32]
X. Yan, C. S. Liu, C. Li, W. Z. Bao, S. J. Ding, D. W. Zhang, and P. Zhou, Tunable SnSe2/WSe2 heterostructure tunneling field effect transistor, Small 13(34), 1701478 (2017)
CrossRef ADS Google scholar
[33]
L. Ye, P. Wang, W. J. Luo, F. Gong, L. Liao, T. D. Liu, L. Tong, J. F. Zang, J. B. Xu, and W. D. Hu, Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure, Nano Energy 37(37), 53 (2017)
CrossRef ADS Google scholar
[34]
W. Z. Yu, S. J. Li, Y. P. Zhang, W. L. Ma, T. Sun, J. Yuan, K. Fu, and Q. L. Bao, Near-infrared photodetectors based on MoTe2/graphene heterostructure with high responsivity and flexibility, Small 13(24), 1700268 (2017)
CrossRef ADS Google scholar
[35]
K. Zhang, X. Fang, Y. L. Wang, Y. Wan, Q. J. Song, W. H. Zhai, Y. P. Li, G. Z. Ran, Y. Ye, and L. Dai, Ultrasensitive near-infrared photodetectors based on a graphene-MoTe2-graphene vertical van der Waals heterostructure, ACS Appl. Mater. Interfaces 9(6), 5392 (2017)
CrossRef ADS Google scholar
[36]
Y. Chen, X. D. Wang, G. J. Wu, Z. Wang, H. H. Fang, T. Lin, S. Sun, H. Shen, W. D. Hu, J. L. Wang, J. L. Sun, X. J. Meng, and J. H. Chu, High-performance photovoltaic detector based on MoTe2/MoS2 van der Waals heterostructure, Small 14(9), 1703293 (2018)
CrossRef ADS Google scholar
[37]
B. Q. Luan, and R. H. Zhou, Spontaneous transport of single-stranded DNA through graphene-MoS2 heterostructure nanopores, ACS Nano 12(4), 3886 (2018)
CrossRef ADS Google scholar
[38]
H. Xu, X. Y. Han, X. Dai, W. Liu, J. Wu, J. T. Zhu, D. Y. Kim, G. F. Zou, K. A. Sablon, A. Sergeev, Z. Guo, and H. Liu, SK. A. ablon, A. Sergeev, Z. X. Guo and H. Y. Liu, High detectivity and transparent fewlayer MoS2/glassy-graphene heterostructure photodetectors, Adv. Mater. 30(13), 1706561 (2018)
CrossRef ADS Google scholar
[39]
Y. Tan, X. B. Liu, Z. L. He, Y. R. Liu, M. W. Zhao, H. Zhang, and F. Chen, Tuning of interlayer coupling in large-area graphene/WSe2 van der Waals heterostructure via ion irradiation: Optical evidences and photonic applications, ACS Photon. 4(6), 1531 (2017)
CrossRef ADS Google scholar
[40]
X. Huang, Ch. L. Tan, Z. Y. Yin, and H. Zhang, Hybrid nanostructures based on two-dimensional nanomaterials, Adv. Mater. 26(14), 2185 (2014)
CrossRef ADS Google scholar
[41]
J. Kim, V. Park, H. Jang, N. Koirala, J. B. Lee, U. J. Kim, H. S. Lee, Y. G. Roh, H. Lee, S. Sim, S. Cha, C. In, J. Park, J. Lee, M. Noh, J. Moon, M. Salehi, J. Sung, S. S. Chee, M. H. Ham, M. H. Jo, S. Oh, J. H. Ahn, S. W. Hwang, D. Kim, and H. Choi, Highly sensitive, gatetunable, room-temperature mid-infrared photodetection based on graphene-Bi2Se3 heterostructure, ACS Photon. 4(3), 482 (2017)
CrossRef ADS Google scholar
[42]
K. Liu, L. Zhang, T. Cao, C. Jin, D. Qiu, Q. Zhou, A. Zettl, P. Yang, S. G. Louie, and F. Wang, Evolution of interlayer coupling in twisted molybdenum disulfide bilayers, Nat. Commun. 5(1), 4966 (2014)
CrossRef ADS Google scholar
[43]
M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, Probing the interlayer exciton physics in a MoS2/MoSe2/MoS2 van der Waals heterostructure, Nano Lett. 17(10), 6360 (2017)
CrossRef ADS Google scholar
[44]
S. Huang, X. Ling, L. Liang, J. Kong, H. Terrones, V. Meunier, and M. S. Dresselhaus, Probing the interlayer coupling of twisted bilayer MoS2 using photoluminescence spectroscopy, Nano Lett. 14(10), 5500 (2014)
CrossRef ADS Google scholar
[45]
W. Yao, E. Wang, C. Bao, Y. Zhang, K. Zhang, K. Bao, C. K. Chan, C. Chen, J. Avila, M. C. Asensio, J. Zhu, and S. Zhou, Quasicrystalline 30◦ twisted bilayer graphene as an incommensurate superlattice with strong interlayer coupling, Proc. Natl. Acad. Sci. USA 115(27), 6928 (2018)
CrossRef ADS Google scholar
[46]
H. Zhang, Ultrathin two-dimensional nanomaterials, ACS Nano 9(10), 9451 (2015)
CrossRef ADS Google scholar
[47]
M. S. Choi, G. H. Lee, Y. J. Yu, D. Y. Lee, S. H. Lee, P. Kim, J. Hone, and W. J. Yoo, Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices, Nat. Commun. 4(1), 1624 (2013)
CrossRef ADS Google scholar
[48]
K. Kim, S. Larentis, B. Fallahazad, K. Lee, J. Xue, D. C. Dillen, C. M. Corbet, and E. Tutuc, Band alignment in WSe2-graphene heterostructures,ACS Nano 9(4), 4527 (2015)
CrossRef ADS Google scholar
[49]
Y. Zhao, X. Luo, H. Li, J. Zhang, P. T. Araujo, C. K. Gan, J. Wu, H. Zhang, S. Y. Quek, M. S. Dresselhaus, and Q. Xiong, Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2, Nano Lett. 13(3), 1007 (2013)
CrossRef ADS Google scholar
[50]
R. He, J. A. Yan, Z. Yin, Z. Ye, G. Ye, J. Cheng, J. Li, and C. H. Lui, Coupling and stacking order of ReS2 atomic layers revealed by ultralow-frequency raman spectroscopy, Nano Lett. 16(2), 1404 (2016)
CrossRef ADS Google scholar
[51]
S. Huang, L. Liang, X. Ling, A. A. Puretzky, D. B. Geohegan, B. G. Sumpter, J. Kong, V. Meunier, and M. S. Dresselhaus, Low-frequency interlayer Raman modes to probe interface of twisted bilayer MoS2, Nano Lett. 16(2), 1435 (2016)
CrossRef ADS Google scholar
[52]
H. Li, J. Wu, X. Huang, Z. Yin, J. Liu, and H. Zhang, A universal, rapid method for clean transfer of nanostructures onto various substrates, ACS Nano 8(7), 6563 (2014)
CrossRef ADS Google scholar
[53]
H. Li, J. Wu, X. Huang, G. Lu, J. Yang, X. Lu, Q. Xiong, and H. Zhang, Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy, ACS Nano 7(11), 10344 (2013)
CrossRef ADS Google scholar
[54]
X. L. Li, X. F. Qiao, W. P. Han, Y. Lu, Q. H. Tan, X. L. Liu, and P. H. Tan, Layer number identification of intrinsic and defective multilayered graphenes up to 100 layers by the Raman mode intensity from substrates, Nanoscale 7(17), 8135 (2015)
CrossRef ADS Google scholar
[55]
M. Buscema, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2, Nano Res. 7(4), 561 (2014)
CrossRef ADS Google scholar
[56]
S. Wu, X. Shi, Y. Liu, L. Wang, J. Zhang, W. Zhao, P. Wei, W. Huang, X. Huang, and H. Li, The influence of two-dimensional organic adlayer thickness on the ultralow frequency Raman spectra of transition metal dichalcogenide nanosheets, Sci. China Mater. (2018), doi: 10.1007/s40843-018-9303-6
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(9649 KB)

Accesses

Citations

Detail

Sections
Recommended

/