Enhancing the thermoelectric performance of Bi2S3: A promising earth-abundant thermoelectric material
Ye Chen, Dongyang Wang, Yuling Zhou, Qiantao Pang, Jianwei Shao, Guangtao Wang, Jinfeng Wang, Li-Dong Zhao
Enhancing the thermoelectric performance of Bi2S3: A promising earth-abundant thermoelectric material
Recently, bismuth sulfide (Bi2S3) has attracted much attention in the thermoelectric community owing to its abundance, low cost, and advanced properties. However, its poor electrical transport properties have prevented Bi2S3 devices from realizing high thermoelectric performance. In this work, our motivation is to decrease the large electrical resistivity, which is recognized as the origin of the low ZT value in undoped Bi2S3. We combined melting and spark plasma sintering (SPS) in a continuous fabrication process to produce Bi2S3–xSex (x = 0, 0.09, 0.15, 0.21) and Bi2S2.85–ySe0.15Cly (y = 0.0015, 0.0045, 0.0075, 0.015, 0.03) samples. Our results show that Se alloying at S sites can narrow the band gap and activate intrinsic electron conduction, leading to a high power factor of ~2.0 μW·cm–1·K–2 at room temperature in Bi2S2.85S0.15, about 100 times higher than that of undoped Bi2S3. Moreover, our further introduction of Cl atoms into the S sites resulted in a second-stage optimization of carrier concentration and simultaneously reduced the lattice thermal conductivity, which contributed to a high ZT value of ~0.6 at 723 K for Bi2S2.835Se0.15Cl0.015. Our results indicate that high thermoelectric performance could be realized in Bi2S3 with earth-abundant and low-cost elements.
thermoelectric / Bi2S3 / carrier concentration / lattice thermal conductivity
[1] |
C. Chang, M. Wu, D. He, Y. Pei, C. F. Wu, X. Wu, H. Yu, F. Zhu, K. Wang, Y. Chen, L. Huang, J. F. Li, J. He, and L. D. Zhao, 3D charge and 2D phonon transports leading to high out-of-plane ZTin n-type SnSe crystals, Science 360(6390), 778 (2018)
CrossRef
ADS
Google scholar
|
[2] |
G. Tan, L. D. Zhao, and M. G. Kanatzidis, Rationally designing high-performance bulk thermoelectric materials, Chem. Rev. 116(19), 12123 (2016)
CrossRef
ADS
Google scholar
|
[3] |
Z. H. Ge, B. P. Zhang, P. P. Shang, Y. Q. Yu, C. Chen, and J. F. Li, Enhancing thermoelectric properties of polycrystalline Bi2S3 by optimizing a ball-milling process, J. Electron. Mater. 40(5), 1087 (2011)
CrossRef
ADS
Google scholar
|
[4] |
L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals, Nature 508(7496), 373 (2014)
CrossRef
ADS
Google scholar
|
[5] |
X. Zhang, D. Wang, H. Wu, M. Yin, Y. Pei, S. Gong, L. Huang, S. J. Pennycook, J. He, and L. D. Zhao, Simultaneously enhancing the power factor and reducing the thermal conductivity of SnTe via introducing its analogues, Energy Environ. Sci. 10(11), 2420 (2017)
CrossRef
ADS
Google scholar
|
[6] |
Y. M. Zhou, H. J. Wu, Y. L. Pei, C. Chang, Y. Xiao, X. Zhang, S. K. Gong, J. Q. He, and L. D. Zhao, Strategy to optimize the overall thermoelectric properties of SnTe via compositing with its property-counter CuInTe2, Acta Mater. 125, 542 (2017)
CrossRef
ADS
Google scholar
|
[7] |
W. He, D. Wang, J. F. Dong, Y. Qiu, L. Fu, Y. Feng, Y. Hao, G. Wang, J. Wang, C. Liu, J. F. Li, J. He, and L. D. Zhao, Remarkable electron and phonon band structures lead to a high thermoelectric performance ZT>1 in earth-abundant and eco-friendly SnS crystals, J. Mater. Chem. A 6(21), 10048 (2018)
CrossRef
ADS
Google scholar
|
[8] |
Z. H. Ge, L. D. Zhao, D. Wu, X. Liu, B. P. Zhang, J. F. Li, and J. He, Low-cost, abundant binary sulfides as promising thermoelectric materials, Mater. Today 19(4), 227 (2016)
CrossRef
ADS
Google scholar
|
[9] |
Y. Kawamoto and H. Iwasaki, Thermoelectric properties of (Bi1–xSbx)2S–3 with orthorhombic structure, J. Electron. Mater. 43(6), 1475 (2014)
CrossRef
ADS
Google scholar
|
[10] |
B. Chen, C. Uher, L. Iordanidis, and M. G. Kanatzidis, Transport properties of Bi2S3 and the ternary bismuth sulfides KBi6.33S10 and K2Bi8S13, Chem. Mater. 9(7), 1655 (1997)
CrossRef
ADS
Google scholar
|
[11] |
Z. Liu, Y. Pei, H. Geng, J. Zhou, X. Meng, W. Cai, W. Liu, and J. Sui, Enhanced thermoelectric performance of Bi2S3 by synergistical action of bromine substitution and copper nanoparticles, Nano Energy 13, 554 (2015)
CrossRef
ADS
Google scholar
|
[12] |
Z. H. Ge, B. P. Zhang, Y. Liu, and J. F. Li, Nanostructured Bi2–xCuxS3 bulk materials with enhanced thermoelectric performance, Phys. Chem. Chem. Phys. 14(13), 4475 (2012)
CrossRef
ADS
Google scholar
|
[13] |
Y. Q. Yu, B. P. Zhang, Z. H. Ge, P. P. Shang, and Y. X. Chen, Thermoelectric properties of Ag-doped bismuth sulfide polycrystals prepared by mechanical alloying and spark plasma sintering, Mater. Chem. Phys. 131(1–2), 216 (2011)
CrossRef
ADS
Google scholar
|
[14] |
J. Yang, G. Liu, J. Yan, X. Zhang, Z. Shi, and G. Qiao, Enhanced the thermoelectric properties of n-type Bi2S3 polycrystalline by iodine doping, J. Alloys Compd. 728, 351 (2017)
CrossRef
ADS
Google scholar
|
[15] |
X. Du, F. Cai, and X. Wang, Enhanced thermoelectric performance of chloride doped bismuth sulfide prepared by mechanical alloying and spark plasma sintering, J. Alloys Compd. 587, 6 (2014)
CrossRef
ADS
Google scholar
|
[16] |
K. Biswas, L. D. Zhao, and M. G. Kanatzidis, Telluriumfree thermoelectric: The anisotropic n-type semiconductor Bi2S3, Adv. Energy Mater. 2(6), 634 (2012)
CrossRef
ADS
Google scholar
|
[17] |
L. J. Zhang, B. P. Zhang, Z. H. Ge, and C. G. Han, Fabrication and properties of Bi2S3–xSex thermoelectric polycrystals, Solid State Commun. 162, 48 (2013)
CrossRef
ADS
Google scholar
|
[18] |
W. Liu, K. C. Lukas, K. McEnaney, S. Lee, Q. Zhang, C. P. Opeil, G. Chen, and Z. Ren, Studies on the Bi2Te3- Bi2Se3-Bi2S3 system for mid-temperature thermoelectric energy conversion, Energy Environ. Sci. 6(2), 552 (2013)
CrossRef
ADS
Google scholar
|
[19] |
J. Pei, L. J. Zhang, B. P. Zhang, P. P. Shang, and Y. C. Liu, Enhancing the thermoelectric performance of CexBi2S3 by optimizing the carrier concentration combined with band engineering, J. Mater. Chem. C 5(47), 12492 (2017)
CrossRef
ADS
Google scholar
|
[20] |
L. D. Zhao, B. P. Zhang, W. S. Liu, H. L. Zhang, and J. F. Li, Enhanced thermoelectric properties of bismuth sulfide polycrystals prepared by mechanical alloying and spark plasma sintering, J. Solid State Chem. 181(12), 3278 (2008)
CrossRef
ADS
Google scholar
|
[21] |
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef
ADS
Google scholar
|
[22] |
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef
ADS
Google scholar
|
[23] |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef
ADS
Google scholar
|
[24] |
L. D. Zhao, B. P. Zhang, J. F. Li, H. L. Zhang, and W. S. Liu, Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering, Solid State Sci. 10(5), 651 (2008)
CrossRef
ADS
Google scholar
|
[25] |
R. Larson, V. A. Greanya, W. C. Tonjes, R. Liu, S. D. Mahanti, and C. G. Olson, Electronic structure of Bi2X3 (X=S, Se, T) compounds: Comparison of theoretical calculations with photoemission studies, Phys. Rev. B 65(8), 085108 (2002)
CrossRef
ADS
Google scholar
|
[26] |
L. D. Zhao, S. H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals, Nature 508(7496), 373 (2014)
CrossRef
ADS
Google scholar
|
[27] |
Y. Xiao, C. Chang, Y. L. Pei, D. Wu, K. L. Peng, X. Y. Zhou, S. K. Gong, J. Q. He, Y. S. Zhang, Z. Zeng, and L. D. Zhao, Origin of low thermal conductivity in SnSe, Phys. Rev. B 94(12), 125203 (2016)
CrossRef
ADS
Google scholar
|
[28] |
L. D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, V. P. Dravid, C. Uher, G. J. Snyder, C. Wolverton, and M. G. Kanatzidis, Ultrahigh power factor and thermoelectric performance in holedoped single-crystal SnSe, Science 351(6269), 141 (2016)
CrossRef
ADS
Google scholar
|
[29] |
R. Chmielowski, D. Péré, C. Bera, I. Opahle, W. Xie, S. Jacob, F. Capet, P. Roussel, A. Weidenkaff, G. K. H. Madsen, and G. Dennler, Theoretical and experimental investigations of the thermoelectric properties of Bi2S3, J. Appl. Phys. 117(12), 125103 (2015)
CrossRef
ADS
Google scholar
|
[30] |
P. Larson, V. A. Greanya, W. C. Tonjes, R. Liu, S. D. Mahanti, and C. G. Olson, Electronic structure of Bi2X3 (X=S, Se, T) compounds: Comparison of theoretical calculations with photoemission studies, Phys. Rev. B 65(8), 085108 (2002)
CrossRef
ADS
Google scholar
|
[31] |
K. Peng, X. Lu, H. Zhan, S. Hui, X. Tang, G. Wang, J. Dai, C. Uher, G. Wang, and X. Zhou, Broad temperature plateau for high ZTs in heavily doped p-type SnSe single crystals, Energy Environ. Sci. 9(2), 454 (2016)
CrossRef
ADS
Google scholar
|
[32] |
L. D. Zhao, S. H. Lo, J. He, H. Li, K. Biswas, J. Androulakis, C. I. Wu, T. P. Hogan, D. Y. Chung, V. P. Dravid, and M. G. Kanatzidis, High performance thermoelectrics from earth-abundant materials: Enhanced figure of merit in PbS by second phase nanostructures, J. Am. Chem. Soc. 133(50), 20476 (2011)
CrossRef
ADS
Google scholar
|
[33] |
H. Wu, C. Chang, D. Feng, Y. Xiao, X. Zhang, Y. Pei, L. Zheng, D. Wu, S. Gong, Y. Chen, J. He, M. G. Kanatzidis, and L. D. Zhao, Synergistically optimized electrical and thermal transport properties of SnTe via alloying high-solubility MnTe, Energy Environ. Sci. 8(11), 3298 (2015)
CrossRef
ADS
Google scholar
|
[34] |
K. Imasato, S. D. Kang, S. Ohno, and G. J. Snyder, Band engineering in Mg3Sb2 by alloying with Mg3Bi2 for enhanced thermoelectric performance, Mater. Horiz. 5(1), 59 (2018)
CrossRef
ADS
Google scholar
|
[35] |
Y. Xiao, H. Wu, W. Li, M. Yin, Y. Pei, Y. Zhang, L. Fu, Y. Chen, S. J. Pennycook, L. Huang, J. He, and L. D. Zhao, Remarkable roles of Cu to synergistically optimize phonon and carrier Transport in n-Type PbTe-Cu2Te, J. Am. Chem. Soc. 139(51), 18732 (2017)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |