Enhancing the thermoelectric performance of Bi2S3: A promising earth-abundant thermoelectric material

Ye Chen, Dongyang Wang, Yuling Zhou, Qiantao Pang, Jianwei Shao, Guangtao Wang, Jinfeng Wang, Li-Dong Zhao

PDF(12552 KB)
PDF(12552 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (1) : 13601. DOI: 10.1007/s11467-018-0845-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Enhancing the thermoelectric performance of Bi2S3: A promising earth-abundant thermoelectric material

Author information +
History +

Abstract

Recently, bismuth sulfide (Bi2S3) has attracted much attention in the thermoelectric community owing to its abundance, low cost, and advanced properties. However, its poor electrical transport properties have prevented Bi2S3 devices from realizing high thermoelectric performance. In this work, our motivation is to decrease the large electrical resistivity, which is recognized as the origin of the low ZT value in undoped Bi2S3. We combined melting and spark plasma sintering (SPS) in a continuous fabrication process to produce Bi2S3–xSex (x = 0, 0.09, 0.15, 0.21) and Bi2S2.85–ySe0.15Cly (y = 0.0015, 0.0045, 0.0075, 0.015, 0.03) samples. Our results show that Se alloying at S sites can narrow the band gap and activate intrinsic electron conduction, leading to a high power factor of ~2.0 μW·cm–1·K–2 at room temperature in Bi2S2.85S0.15, about 100 times higher than that of undoped Bi2S3. Moreover, our further introduction of Cl atoms into the S sites resulted in a second-stage optimization of carrier concentration and simultaneously reduced the lattice thermal conductivity, which contributed to a high ZT value of ~0.6 at 723 K for Bi2S2.835Se0.15Cl0.015. Our results indicate that high thermoelectric performance could be realized in Bi2S3 with earth-abundant and low-cost elements.

Keywords

thermoelectric / Bi2S3 / carrier concentration / lattice thermal conductivity

Cite this article

Download citation ▾
Ye Chen, Dongyang Wang, Yuling Zhou, Qiantao Pang, Jianwei Shao, Guangtao Wang, Jinfeng Wang, Li-Dong Zhao. Enhancing the thermoelectric performance of Bi2S3: A promising earth-abundant thermoelectric material. Front. Phys., 2019, 14(1): 13601 https://doi.org/10.1007/s11467-018-0845-4

References

[1]
C. Chang, M. Wu, D. He, Y. Pei, C. F. Wu, X. Wu, H. Yu, F. Zhu, K. Wang, Y. Chen, L. Huang, J. F. Li, J. He, and L. D. Zhao, 3D charge and 2D phonon transports leading to high out-of-plane ZTin n-type SnSe crystals, Science 360(6390), 778 (2018)
CrossRef ADS Google scholar
[2]
G. Tan, L. D. Zhao, and M. G. Kanatzidis, Rationally designing high-performance bulk thermoelectric materials, Chem. Rev. 116(19), 12123 (2016)
CrossRef ADS Google scholar
[3]
Z. H. Ge, B. P. Zhang, P. P. Shang, Y. Q. Yu, C. Chen, and J. F. Li, Enhancing thermoelectric properties of polycrystalline Bi2S3 by optimizing a ball-milling process, J. Electron. Mater. 40(5), 1087 (2011)
CrossRef ADS Google scholar
[4]
L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals, Nature 508(7496), 373 (2014)
CrossRef ADS Google scholar
[5]
X. Zhang, D. Wang, H. Wu, M. Yin, Y. Pei, S. Gong, L. Huang, S. J. Pennycook, J. He, and L. D. Zhao, Simultaneously enhancing the power factor and reducing the thermal conductivity of SnTe via introducing its analogues, Energy Environ. Sci. 10(11), 2420 (2017)
CrossRef ADS Google scholar
[6]
Y. M. Zhou, H. J. Wu, Y. L. Pei, C. Chang, Y. Xiao, X. Zhang, S. K. Gong, J. Q. He, and L. D. Zhao, Strategy to optimize the overall thermoelectric properties of SnTe via compositing with its property-counter CuInTe2, Acta Mater. 125, 542 (2017)
CrossRef ADS Google scholar
[7]
W. He, D. Wang, J. F. Dong, Y. Qiu, L. Fu, Y. Feng, Y. Hao, G. Wang, J. Wang, C. Liu, J. F. Li, J. He, and L. D. Zhao, Remarkable electron and phonon band structures lead to a high thermoelectric performance ZT>1 in earth-abundant and eco-friendly SnS crystals, J. Mater. Chem. A 6(21), 10048 (2018)
CrossRef ADS Google scholar
[8]
Z. H. Ge, L. D. Zhao, D. Wu, X. Liu, B. P. Zhang, J. F. Li, and J. He, Low-cost, abundant binary sulfides as promising thermoelectric materials, Mater. Today 19(4), 227 (2016)
CrossRef ADS Google scholar
[9]
Y. Kawamoto and H. Iwasaki, Thermoelectric properties of (Bi1–xSbx)2S–3 with orthorhombic structure, J. Electron. Mater. 43(6), 1475 (2014)
CrossRef ADS Google scholar
[10]
B. Chen, C. Uher, L. Iordanidis, and M. G. Kanatzidis, Transport properties of Bi2S3 and the ternary bismuth sulfides KBi6.33S10 and K2Bi8S13, Chem. Mater. 9(7), 1655 (1997)
CrossRef ADS Google scholar
[11]
Z. Liu, Y. Pei, H. Geng, J. Zhou, X. Meng, W. Cai, W. Liu, and J. Sui, Enhanced thermoelectric performance of Bi2S3 by synergistical action of bromine substitution and copper nanoparticles, Nano Energy 13, 554 (2015)
CrossRef ADS Google scholar
[12]
Z. H. Ge, B. P. Zhang, Y. Liu, and J. F. Li, Nanostructured Bi2–xCuxS3 bulk materials with enhanced thermoelectric performance, Phys. Chem. Chem. Phys. 14(13), 4475 (2012)
CrossRef ADS Google scholar
[13]
Y. Q. Yu, B. P. Zhang, Z. H. Ge, P. P. Shang, and Y. X. Chen, Thermoelectric properties of Ag-doped bismuth sulfide polycrystals prepared by mechanical alloying and spark plasma sintering, Mater. Chem. Phys. 131(1–2), 216 (2011)
CrossRef ADS Google scholar
[14]
J. Yang, G. Liu, J. Yan, X. Zhang, Z. Shi, and G. Qiao, Enhanced the thermoelectric properties of n-type Bi2S3 polycrystalline by iodine doping, J. Alloys Compd. 728, 351 (2017)
CrossRef ADS Google scholar
[15]
X. Du, F. Cai, and X. Wang, Enhanced thermoelectric performance of chloride doped bismuth sulfide prepared by mechanical alloying and spark plasma sintering, J. Alloys Compd. 587, 6 (2014)
CrossRef ADS Google scholar
[16]
K. Biswas, L. D. Zhao, and M. G. Kanatzidis, Telluriumfree thermoelectric: The anisotropic n-type semiconductor Bi2S3, Adv. Energy Mater. 2(6), 634 (2012)
CrossRef ADS Google scholar
[17]
L. J. Zhang, B. P. Zhang, Z. H. Ge, and C. G. Han, Fabrication and properties of Bi2S3–xSex thermoelectric polycrystals, Solid State Commun. 162, 48 (2013)
CrossRef ADS Google scholar
[18]
W. Liu, K. C. Lukas, K. McEnaney, S. Lee, Q. Zhang, C. P. Opeil, G. Chen, and Z. Ren, Studies on the Bi2Te3- Bi2Se3-Bi2S3 system for mid-temperature thermoelectric energy conversion, Energy Environ. Sci. 6(2), 552 (2013)
CrossRef ADS Google scholar
[19]
J. Pei, L. J. Zhang, B. P. Zhang, P. P. Shang, and Y. C. Liu, Enhancing the thermoelectric performance of CexBi2S3 by optimizing the carrier concentration combined with band engineering, J. Mater. Chem. C 5(47), 12492 (2017)
CrossRef ADS Google scholar
[20]
L. D. Zhao, B. P. Zhang, W. S. Liu, H. L. Zhang, and J. F. Li, Enhanced thermoelectric properties of bismuth sulfide polycrystals prepared by mechanical alloying and spark plasma sintering, J. Solid State Chem. 181(12), 3278 (2008)
CrossRef ADS Google scholar
[21]
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef ADS Google scholar
[22]
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef ADS Google scholar
[23]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[24]
L. D. Zhao, B. P. Zhang, J. F. Li, H. L. Zhang, and W. S. Liu, Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering, Solid State Sci. 10(5), 651 (2008)
CrossRef ADS Google scholar
[25]
R. Larson, V. A. Greanya, W. C. Tonjes, R. Liu, S. D. Mahanti, and C. G. Olson, Electronic structure of Bi2X3 (X=S, Se, T) compounds: Comparison of theoretical calculations with photoemission studies, Phys. Rev. B 65(8), 085108 (2002)
CrossRef ADS Google scholar
[26]
L. D. Zhao, S. H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals, Nature 508(7496), 373 (2014)
CrossRef ADS Google scholar
[27]
Y. Xiao, C. Chang, Y. L. Pei, D. Wu, K. L. Peng, X. Y. Zhou, S. K. Gong, J. Q. He, Y. S. Zhang, Z. Zeng, and L. D. Zhao, Origin of low thermal conductivity in SnSe, Phys. Rev. B 94(12), 125203 (2016)
CrossRef ADS Google scholar
[28]
L. D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, V. P. Dravid, C. Uher, G. J. Snyder, C. Wolverton, and M. G. Kanatzidis, Ultrahigh power factor and thermoelectric performance in holedoped single-crystal SnSe, Science 351(6269), 141 (2016)
CrossRef ADS Google scholar
[29]
R. Chmielowski, D. Péré, C. Bera, I. Opahle, W. Xie, S. Jacob, F. Capet, P. Roussel, A. Weidenkaff, G. K. H. Madsen, and G. Dennler, Theoretical and experimental investigations of the thermoelectric properties of Bi2S3, J. Appl. Phys. 117(12), 125103 (2015)
CrossRef ADS Google scholar
[30]
P. Larson, V. A. Greanya, W. C. Tonjes, R. Liu, S. D. Mahanti, and C. G. Olson, Electronic structure of Bi2X3 (X=S, Se, T) compounds: Comparison of theoretical calculations with photoemission studies, Phys. Rev. B 65(8), 085108 (2002)
CrossRef ADS Google scholar
[31]
K. Peng, X. Lu, H. Zhan, S. Hui, X. Tang, G. Wang, J. Dai, C. Uher, G. Wang, and X. Zhou, Broad temperature plateau for high ZTs in heavily doped p-type SnSe single crystals, Energy Environ. Sci. 9(2), 454 (2016)
CrossRef ADS Google scholar
[32]
L. D. Zhao, S. H. Lo, J. He, H. Li, K. Biswas, J. Androulakis, C. I. Wu, T. P. Hogan, D. Y. Chung, V. P. Dravid, and M. G. Kanatzidis, High performance thermoelectrics from earth-abundant materials: Enhanced figure of merit in PbS by second phase nanostructures, J. Am. Chem. Soc. 133(50), 20476 (2011)
CrossRef ADS Google scholar
[33]
H. Wu, C. Chang, D. Feng, Y. Xiao, X. Zhang, Y. Pei, L. Zheng, D. Wu, S. Gong, Y. Chen, J. He, M. G. Kanatzidis, and L. D. Zhao, Synergistically optimized electrical and thermal transport properties of SnTe via alloying high-solubility MnTe, Energy Environ. Sci. 8(11), 3298 (2015)
CrossRef ADS Google scholar
[34]
K. Imasato, S. D. Kang, S. Ohno, and G. J. Snyder, Band engineering in Mg3Sb2 by alloying with Mg3Bi2 for enhanced thermoelectric performance, Mater. Horiz. 5(1), 59 (2018)
CrossRef ADS Google scholar
[35]
Y. Xiao, H. Wu, W. Li, M. Yin, Y. Pei, Y. Zhang, L. Fu, Y. Chen, S. J. Pennycook, L. Huang, J. He, and L. D. Zhao, Remarkable roles of Cu to synergistically optimize phonon and carrier Transport in n-Type PbTe-Cu2Te, J. Am. Chem. Soc. 139(51), 18732 (2017)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(12552 KB)

Accesses

Citations

Detail

Sections
Recommended

/