Precision mass measurements of short-lived nuclides at HIRFL-CSR in Lanzhou

Ming-Ze Sun, Xiao-Hong Zhou, Meng Wang, Yu-Hu Zhang, Yu. A. Litvinov

PDF(15224 KB)
PDF(15224 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (6) : 132112. DOI: 10.1007/s11467-018-0844-5
REVIEW ARTICLE
REVIEW ARTICLE

Precision mass measurements of short-lived nuclides at HIRFL-CSR in Lanzhou

Author information +
History +

Abstract

In recent years, extensive short-lived nuclear mass measurements have been carried out at the Heavy- Ion Research Facility (HIRFL) in Lanzhou using Isochronous Mass Spectrometry (IMS). The obtained mass values have been successfully applied to nuclear structure and astrophysics studies. In this contribution, we give a brief introduction to the nuclear mass measurements at HIRFL-CSR facility. Main technical developments are described and recent results are summarized. Furthermore, we envision the future perspective for the next-generation storage ring facility HIAF in Huizhou.

Keywords

nuclear mass / short-lived nuclei / storage ring / isochronous mass spectrometry

Cite this article

Download citation ▾
Ming-Ze Sun, Xiao-Hong Zhou, Meng Wang, Yu-Hu Zhang, Yu. A. Litvinov. Precision mass measurements of short-lived nuclides at HIRFL-CSR in Lanzhou. Front. Phys., 2018, 13(6): 132112 https://doi.org/10.1007/s11467-018-0844-5

References

[1]
G. Audi, The history of nuclidic masses and of their evaluation, Int. J. Mass Spectrom. 251, 85 (2006)
CrossRef ADS Google scholar
[2]
K. Blaum, High-accuracy mass spectrometry with stored ions, Phys. Rev. 425, 1 (2006)
[3]
D. Lunney, J. M. Pearson, and C. Thibault, Recent trends in the determination of nuclear masses, Rev. Mod. Phys. 75, 1021 (2003)
CrossRef ADS Google scholar
[4]
A. S. Eddington, The internal constitution of the stars, Nature 106, 14 (1920)
CrossRef ADS Google scholar
[5]
F. W. Aston, A new mass spectrograph and the wholenumber rule, Proc. Roy. Soc. A 115, 487 (1927)
CrossRef ADS Google scholar
[6]
F. W. Aston, Mass spectra and isotopes, Nobel Lecture, (1922)
[7]
G. Gamow, Mass defect curve and nuclear constitution, Proc. Royal Society A 126, 632 (1930)
CrossRef ADS Google scholar
[8]
C. F. von Weizsäcker, Zur Theorie der Kernmassen, Z. Phys. 96, 431 (1935)
CrossRef ADS Google scholar
[9]
H. A. Bethe und R. F. Bacher, Stationary states of nuclei, Rev. Mod. Phys. 8, 82 (1936)
CrossRef ADS Google scholar
[10]
A. J. Dempster, A new method of positive ray analysis, Phys. Rev. 11, 316 (1918)
CrossRef ADS Google scholar
[11]
J. H. E. Mattauch, W. Thiele, and A. H. Wapstra, 1964 Atomic mass table, Nucl. Phys. 67, 1 (1965)
CrossRef ADS Google scholar
[12]
H. Ewald and H. Hintenberger, Methoden und Anwendungen der Massenspektroskopie, Zeitschrift Naturforschung Teil A 8, 338 (1953)
[13]
F. Everling, L. A. König, J. H. E. Mattauch, and A. H. Wapstra, Relative nuclidic masses, Nucl. Phys. 18, 529 (1960)
CrossRef ADS Google scholar
[14]
K. Blaum and Yu. A. Litvinov (Eds.), 100 Years of Mass Spectrometry, Int. J. Mass Spectr.349–350, 1 (2013)
[15]
H. Geissel, (.), Encyclopedia of Nuclear Physics and its Applications, 1st Ed., Wiley-VCH, Weinheim, 2013
[16]
T. Kubo, In-flight RI beam separator BigRIPS at RIKEN and elsewhere in Japan, Nucl. Instrum. Methods Phys. Res. B 204, 97 (2003)
CrossRef ADS Google scholar
[17]
J. Kurcewicz, F. Farinon, H. Geissel, S. Pietri, C. Nociforo, , Discovery and cross-section measurement of neutron-rich isotopes in the element range from neodymium to platinum with the FRS, Phys. Lett. B 717, 371 (2012)
CrossRef ADS Google scholar
[18]
J. Erler, N. Birge, M. Kortelainen, W. Nazarewicz, E. Olsen, A. M. Perhac, and M. Stoitsov, The limits of the nuclear landscape, Nature (London)486, 509 (2012)
CrossRef ADS Google scholar
[19]
X. W. Xia, Y. Lim, P. W. Zhao, H. Z. Liang, X. Y. Qu, Y. Chen, H. Liu, L. F. Zhang, S. Q. Zhang, Y. Kim, and J. Meng, The limits of the nuclear landscape explored by the relativistic continuum Hartree–Bogoliubov theory, Atomic Data and Nuclear Data Tables121–122, 1 (2018)
CrossRef ADS Google scholar
[20]
M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and X. Xu, The AME2016 atomic mass evaluation (II): Tables, graphs and references, Chin. Phys. C 41, 030003 (2017)
CrossRef ADS Google scholar
[21]
J. Dobaczewski, I. Hamamoto, W. Nazarewicz, and J. A. Sheikh, Nuclear shell structure at particle drip lines, Phys. Rev. Lett. 72, 981 (1994)
CrossRef ADS Google scholar
[22]
T. Otsuka, R. Fujimoto, Y. Utsuno, B. A. Brown, M. Honma, and T. Mizusaki, Magic numbers in exotic nuclei and spin-isospin properties of the NNInteraction, Phys. Rev. Lett. 87, 082502 (2001)
CrossRef ADS Google scholar
[23]
L. Satpathy and S. K. Patra, New magic numbers and new islands of stability in drip-line regions in mass model, Nucl. Phys. A 722, C24 (2003)
CrossRef ADS Google scholar
[24]
D. Steppenbeck, S. Takeuchi, N. Aoi, P. Doornenbal, M. Matsushita, , Evidence for a new nuclear “magic number” from the level structure of 54Ca, Nature 502, 207 (2013)
CrossRef ADS Google scholar
[25]
A. Ozawa, T. Kobayashi, T. Suzuki, K. Yoshida, and I. Tanihata, New magic number, N= 16, near the neutron drip line, Phys. Rev. Lett. 84, 5493 (2000)
CrossRef ADS Google scholar
[26]
R. Kanungo, A new view of nuclear shells, Phys. Scr. T152, 014002 (2013)
CrossRef ADS Google scholar
[27]
X. Xu, M. Wang, Y.-H. Zhang, H.-S. Xu, P. Shuai, , Direct mass measurements of neutron-rich 86Kr projectile fragments and the persistence of neutron magicnumber N= 32 in Sc isotopes, Chin. Phys. C 39, 106201 (2015)
CrossRef ADS Google scholar
[28]
E. M. Burbidge, G. R. Burbidge, W. A. Fowler, and F. Hoyle, Synthesis of the elements in stars, Rev. Mod. Phys. 29, 547 (1957)
CrossRef ADS Google scholar
[29]
H. Schatz, Nuclear masses in astrophysics, International Journal of Mass Spectrometry349–350, 181 (2013)
CrossRef ADS Google scholar
[30]
D. Martin, A. Arcones, W. Nazarewicz, and E. Olsen, Impact of nuclear mass uncertainties on the γprocess, Phys. Rev. Lett. 116, 121101 (2016)
CrossRef ADS Google scholar
[31]
R. Knöbel, M. Diwisch, H. Geissel, Yu. A. Litvinov, Z. Patyk, , New results from isochronous mass measurements of neutron-rich uranium fission fragments with the FRS-ESR-facility at GSI, Eur. Phys. J. A 52, 138 (2016)
CrossRef ADS Google scholar
[32]
K. Blaum, M. Block, R. B. Cakirli, S. Eliseev, M. Kowalska, S. Kreim, Y. A. Litvinov, Sz. Nagy, W. Nortershauser, and D. T. Yordanov, Measurements of groundstate properties for nuclear structure studies by precision mass and laser spectroscopy, J. Phys. Conf. Ser. 312, 092001 (2011)
CrossRef ADS Google scholar
[33]
K. Blaum, J. Dilling, and W. Nortershauser, Precision atomic physics techniques for nuclear physics with radioactive beams, Phys. Scr. T152, 014017 (2013)
CrossRef ADS Google scholar
[34]
B. Franzke, H. Geissel, and G. Münzenberg, Mass and lifetime measurements of exotic nuclei in storage rings, Mass Spec. Rev. 27, 428 (2008)
CrossRef ADS Google scholar
[35]
P. Egelhof, Y. Litvinov and M. Steck, Proceedings of the 9th International Conference on Nuclear Physics at Storage Rings STORI’14, Phys. Scr. 2015, 010301 (2015)
CrossRef ADS Google scholar
[36]
H. Geissel, Yu. A. Litvinov, F. Attallah, K. Beckert, P. Beller, , New results with stored exotic nuclei at relativistic energies, Nucl. Phys. A 746, 150c (2004)
CrossRef ADS Google scholar
[37]
Y. H. Zhang, Y. A. Litvinov, T. Uesaka and H. S. Xu, Storage ring mass spectrometry for nuclear structure and astrophysics research, Phys. Scr. 91, 073002 (2016)
CrossRef ADS Google scholar
[38]
X. Gao, Y. J. Yuan, J. C. Yang, S. Litvinov, M. Wang, Y. Litvinov, W. Zhang, D. Y. Yin, G. D. Shen, W. P. Chai, J. Shi, and P. Shang, Isochronicity corrections for isochronous mass measurements at the HIRFL-CSRe, Nucl. Instr. Meth. in Phys. Res. Sect. A 763, 53 (2014)
[39]
J. W. Xia, W. L. Zhan, B. W. Wei, Y. J. Yuan, M. T. Song, , The heavy ion cooler-storage-ring project (HIRFL-CSR) at Lanzhou, Nucl. Instr. Meth. in Phys. Res. Sect. A 488, 11 (2002)
[40]
Y. J. Yuan, J. C. Yang, J. W. Xia, P. Yuan, W. M. Qiao, , Status of the HIRFL–CSR complex, Nucl. Instrum. Methods Phys. Res. B 317, 214 (2013)
CrossRef ADS Google scholar
[41]
B. Mei, X. L. Tu, M. Wang, H. S. Xu, R. S. Mao, , A high performance time-of-flight detector applied to isochronous mass measurement at CSRe, Nucl. Instrum. Meth. A 624, 109 (2010)
CrossRef ADS Google scholar
[42]
P. Zhang, X. Xu, P. Shuai, R. J. Chen, X. L. Yan, , High-precision QEC values of superallowed 0+→0+β-emitters 46Cr, 50Fe and 54Ni, Phys. Lett. B 767, 20 (2017)
CrossRef ADS Google scholar
[43]
M.Hausmann, J. Stadlmann, F. Attallah, K. Beckert, P. Beller, , Isochronous mass measurements of hot exotic nuclei, Hyperfine Interactions 132, 291 (2001)
CrossRef ADS Google scholar
[44]
X. L. Tu, M. Wang, Yu. A. Litvinov, Y. H. Zhang, H. S. Xu, , Precision isochronous mass measurements at the storage ring CSRe in Lanzhou, Nucl. Instrum. Methods Phys. Res. A 654, 213 (2011)
CrossRef ADS Google scholar
[45]
B. -H. Sun, H. Geissel, M. Hausmann, C. Kozhuharov, R. Knöbel, Yu. A. Litvinov, J. Meng, Z. Patyk, T. Radon, and C. Scheidenberger, Identification of time-offlight spectra for isochronous mass measurements, Chin. Phys. C 33, 161 (2009)
CrossRef ADS Google scholar
[46]
Yu. A. Litvinov, H. Geissel, T. Radon, F. Attallah, G. Audi, , Mass measurement of cooled neutron-deficient bismuth projectile fragments with time-resolved Schottky mass spectrometry at the FRSESR facility, Nucl. Phys. A 7563 (2005)
CrossRef ADS Google scholar
[47]
B. Sun, R. Knöbel, Yu. A. Litvinov, H. Geissel, J. Meng, , Nuclear structure studies of short-lived neutronrich nuclei with the novel large-scale isochronous mass spectrometry at the FRS-ESR facility, Nucl. Phys. A 8121 (2008)
CrossRef ADS Google scholar
[48]
A. Kankainen, V.-V. Elomaa, T. Eronen, D. Gorelov, J. Hakala, , Mass measurements in the vicinity of the doubly magic waiting point 56Ni, Phys. Rev. C 82034311 (2010)
CrossRef ADS Google scholar
[49]
X. L. Tu, Mass measurements of short-lived A= 2Z–1 nuclides at HIRFL-CSR, Ph D Thesis, University of Chinese Academy of Sciences, 2011
[50]
Y. H. Zhang, H. S. Xu, Yu. A. Litvinov, X. L. Tu, X. L. Yan, , Mass measurements of the neutrondeficient 41Ti, 45Cr, 49Fe, and 53Ni nuclides: First test of the isobaric multiplet mass equation in fp-Shell nuclei, Phys. Rev. Lett. 107, 102501 (2012)
CrossRef ADS Google scholar
[51]
X. L. Yan, H. S. Xu, Yu. A. Litvinov, Y. H. Zhang, H. Schatz, , Mass measurement of 45Cr and its impact on the Ca-Sc cycle in X-ray bursts, Astrophys. J. Letters 766, L8 (2013)
CrossRef ADS Google scholar
[52]
P. Shuai, H. S. Xu, Y. H. Zhang, Yu. A. Litvinov, M. Wang, , Accurate correction of magnetic field instabilities for high-resolution isochronous mass measurements in storage rings, arXiv: 1407.3459 [nucl-ex]
[53]
X. Xu, P. Zhang, P. Shuai, R. J. Chen, X. L. Yan, , Identification of the lowest T= 2, Jπ= 0+ isobaric analog state in 52Co and its impact on the understanding of β-decay properties of 52Ni, Phys. Rev. Lett. 117, 182503 (2016)
CrossRef ADS Google scholar
[54]
Y. M. Xing, K. A. Li, Y. H. Zhang, X. H. Zhou, M. Wang, , Mass measurements of neutron-deficient Y, Zr, and Nb isotopes and their impact on γpand νpnucleosynthesis processes, Phys. Lett. B 781, 358 (2018)
CrossRef ADS Google scholar
[55]
C. Y. Fu, Y. H. Zhang, X. H. Zhou, M. Wang, Yu. A. Litvinov, , Masses of the Tz= −3/2 nuclei 27P and 29S, Phys. Rev. C 98, 014315 (2018)
CrossRef ADS Google scholar
[56]
R. J. Chen, X. L. Yan, W. W. Ge, Y. J. Yuan, M. Wang, , A method to measure the transition energy γtof the isochronously tuned storage ring, Nucl. Instrum. Meth. A 898, 111 (2018)
CrossRef ADS Google scholar
[57]
X. Xu, M. Wang, P. Shuai, R. J. Chen, X. L. Yan, , A data analysis method for isochronous mass spectrometry usingtwo time-of-flight detectors at CSRe, Chin. Phys. C 39, 106201 (2015)
CrossRef ADS Google scholar
[58]
P. Shuai, X. Xu, Y. H. Zhang, H. S. Xu, Yu. A. Litvinov, , An improvement of isochronous mass spectrometry: Velocity measurements using two time-of-flight detectors, Nucl. Instrum. Methods Phys. Res. B 376, 311 (2016)
CrossRef ADS Google scholar
[59]
W. Zhang, X. L. Tu, M. Wang, Y. H. Zhang, H. S. Xu, , Time-of-flight detectors with improved timing performance for isochronous mass measurements at the CSRe, Nucl. Instrum. Meth. A 756, 1 (2014)
CrossRef ADS Google scholar
[60]
Y. M. Xing, M. Wang, Y. H. Zhang, P. Shuai, X. Xu, , First isochronous mass measurements with two time-of-flight detectors at CSRe, Phys. Scr. 2015, 014010 (2015)
CrossRef ADS Google scholar
[61]
W. R. Phillips, I. Ahmad, D. W. Banes, B. G. Glagola, W. Henning, W. Kutschera, K. E. Rehm, J. P. Schiffer, and T. F. Wang, Charge-state dependence of nuclear lifetimes, Phys. Rev. Lett. 62, 1025 (1989)
CrossRef ADS Google scholar
[62]
M. Jung, F. Bosch, K. Beckert, H. Eickhoff, H. Folger, , First observation of bound-state β-decay, Phys. Rev. Lett. 69, 2164 (1992)
CrossRef ADS Google scholar
[63]
F. Attallah, M. Aiche, J. F. Chemin, J. N. Scheurer, W. E. Meyerhof, J. P. Grandin, P. Aguer, G. Bogaert, J. Kiener, A. Lefebvre, J. P. Thibaud, and C. Grunberg, Charge state blocking of K-shell internal conversion in 125Te, Phys. Rev. Lett. 75, 1715 (1995)
CrossRef ADS Google scholar
[64]
H. Irnich, H. Geissel, F. Nolden, K. Beckert, F. Bosch, , Half-life measurements of bare, mass-resolved isomers in a storage-cooler ring, Phys. Rev. Lett. 75, 4182 (1995)
CrossRef ADS Google scholar
[65]
F. Bosch, T. Faestermann, J. Friese, F. Heine, P. Kienle, , Observation of bound-state β-decay of fully ionized 187Re: 187Re-187Os cosmochronometry, Phys. Rev. Lett. 77, 5190 (1996)
CrossRef ADS Google scholar
[66]
T. Ohtsubo, F. Bosch, H. Geissel, L. Maier, C. Scheidenberger, , Simultaneous measurement of β-decay to bound and continuum electron states, Phys. Rev. Lett. 95, 052501 (2005)
CrossRef ADS Google scholar
[67]
Yu. A. Litvinov, F. Bosch, H. Geissel, J. Kurcewicz, Z. Patyk, , Measurement of the β+ and orbital electron-capture decay rates in fully ionized, hydrogenlike, and heliumlike 140Pr Ions, Phys. Rev. Lett. 99, 262501 (2007)
CrossRef ADS Google scholar
[68]
Yu. A. Litvinov, F. Bosch, N. Winckler, D. Boutin, H. G. Essel, , Observation of non-exponential orbital electron capture decays of hydrogen-like 140Pr and 142Pm ions, Phys. Lett. B 664, 162 (2008)
CrossRef ADS Google scholar
[69]
P. Kienle (for the Two-Body-Weak-Decays Collaboration), High-resolution measurement of the timemodulated orbital electron capture and of the β+ decay of hydrogen-like 142Pm60+ ions, Phys. Lett. B 726, 638 (2013)
CrossRef ADS Google scholar
[70]
J. N. Bahcall, Beta decay in stellar interiors, Phys. Rev. 126, 1143 (1962)
CrossRef ADS Google scholar
[71]
Q. Zeng, M. Wang, X. H. Zhou, Y. H. Zhang, X. L. Tu, , Half-life measurement of short-lived 94m44 Ru44+ using isochronous mass spectrometry, Phys. Rev. C 96, 031303 (2017)
CrossRef ADS Google scholar
[72]
R. J. Chen, Y. J. Yuan, M. Wang, X. Xu, P. Shuai, , Simulations of the isochronous mass spectrometry at the HIRFL-CSR, Phys. Scr. 2015, 014044 (2015)
CrossRef ADS Google scholar
[73]
X. C. Chen, Q. Zeng, Yu. A. Litvinov, X. L. Tu, P. M. Walker, M. Wang, Q. Wang, K. Yue, and Y. H. Zhang, Statistical approaches to lifetime measurements with restricted observation times, Phys. Rev. C 96, 034302 (2017)
CrossRef ADS Google scholar
[74]
X. L. Tu, H. S. Xu, M. Wang, Y. H. Zhang, Yu. A. Litvinov, , Direct mass measurements of shortlived A= 2Z–1 nuclides 63Ge, 65As, 67Se, and 71Kr and their impact on nucleosynthesis in the rpprocess, Phys. Rev. Lett. 106, 112501 (2011)
CrossRef ADS Google scholar
[75]
P. Shuai, H. S. Xu, X. L. Tu, Y. H. Zhang, B. H. Sun, , Charge and frequency resolved isochronous mass spectrometry and the mass of 51Co, Phys. Lett. B 735, 327 (2014)
CrossRef ADS Google scholar
[76]
E. P. Wigner, On the consequences of the symmetry of the nuclear hamiltonian on the spectroscopy of nuclei, Phys. Rev. 51, 106 (1937)
CrossRef ADS Google scholar
[77]
E. P. Wigner, in: Proc. of the R. A. Welch Foundation Conf. on Chemical Research, Houston, edited by W. O. Milligan (R. A. Welch Foundation, Houston, 1957), Vol. 1
[78]
S. Weinberg and S. B. Treiman, Electromagnetic Corrections to isotopic spin conservation, Phys. Rev. 116, 465 (1959)
CrossRef ADS Google scholar
[79]
M. B. Bennett, C. Wrede, B. A. Brown, S. N. Liddick, D. Pérez-Loureiro, , Isobaric multiplet mass equation in the A= 31, T= 3/2 quartets, Phys. Rev. C 93, 064310 (2016)
CrossRef ADS Google scholar
[80]
M. MacCormick and G. Audi, Evaluated experimental isobaric analogue states from T= 1/2 to T= 3 and associated IMME coefficients, Nucl. Phys. A 925, 61 (2014)
CrossRef ADS Google scholar
[81]
A. T. Gallant, M. Brodeur, C. Andreoiu, A. Bader, A. Chaudhuri, , Breakdown of the isobaric multiplet mass equation for the A= 20 and 21 multiplets, Phys. Rev. Lett. 113, 082501 (2014)
CrossRef ADS Google scholar
[82]
A. Kankainen, L. Canete, T. Eronen, J. Hakala, A. Jokinen, J. Koponen, I. D. Moore, D. Nesterenko, J. Reinikainen, S. Rinta-Antila, A. Voss, and J. Äystö, Mass of astrophysically relevant 31Cl and the breakdown of the isobaric multiplet mass equation, Phys. Rev. C 93, 041304(R) (2016)
[83]
R. Ringle, T. Sun, G. Bollen, D. Davies, M. Facina, J. Huikari, E. Kwan, D. J. Morrissey, A. Prinke, J. Savory, P. Schury, S. Schwarz, and C. S. Sumithrarachchi, Highprecision Penning trap mass measurements of 37,38Ca and their contributions to conserved vector current and isobaric mass multiplet equation, Phys. Rev. C 75, 055503 (2007)
CrossRef ADS Google scholar
[84]
C. Yazidjian, G. Audi, D. Beck, K. Blaum, S. George, C. Guenaut, F. Herfurth, A. Herlert, A. Kellerbauer, H.-J. Kluge, D. Lunney, and L. Schweikhard, Evidence for a breakdown of the isobaric multiplet mass equation: A study of the A= 35, T= 3/2 isospin quartet, Phys. Rev. C 76, 024308 (2007)
CrossRef ADS Google scholar
[85]
A. Saastamoinen, T. Eronen, A. Jokinen, V.-V. Elomaa, J. Hakala, A. Kankainen, I. D. Moore, S. Rahaman, J. Rissanen, C. Weber, J. Äystö, and L. Trache, Mass of 23Al for testing the isobaric multiplet mass equation, Phys. Rev. C 80, 044330 (2009)
CrossRef ADS Google scholar
[86]
A. Kankainen, T. Eronen, D. Gorelov, J. Hakala, A. Jokinen, V. S. Kolhinen, M. Reponen, J. Rissanen, A. Saastamoinen, V. Sonnenschein, and J. Äystö, Highprecision mass measurement of 31S with the double Penning trap JYFLTRAP improves the mass value for 32Cl, Phys. Rev. C 82, 052501(R) (2010)
[87]
J. Su, W. P. Liu, N. T. Zhang, Y. P. Shen, Y. H. Lam, , Revalidation of the isobaric multiplet mass equation at A= 53, T= 3/2, Phys. Lett. B 756, 323 (2016)
CrossRef ADS Google scholar
[88]
C. Dossat, N. Adimi, F. Aksouh, F. Becker, A. Bey, , The decay of proton-rich nuclei in the mass A= 36–56 region, Nucl. Phys. A 792, 18 (2007)
CrossRef ADS Google scholar
[89]
S. E. A. Orrigo, B. Rubio, Y. Fujita, W. Gelletly, J. Agramunt, , βdecay of the exotic Tz= –2 nuclei 48Fe, 52Ni, and 56Zn, Phys. Rev. C 93, 044336 (2016)
CrossRef ADS Google scholar
[90]
G. Audi, F. G. Kondev, M. Wang, W. J. Huang, and S. Naimi, The NUBASE2016 evaluation of nuclear properties, Chin. Phys. C 41, 030001 (2017)
CrossRef ADS Google scholar
[91]
M. A. Bentley and S. M. Lenzi, Coulomb energy differences between high-spin states in isobaric multiplets, Prog. Part. Nucl. Phys. 59, 497 (2007)
CrossRef ADS Google scholar
[92]
W. Benenson and E.Kashy, Isobaric quartets in nuclei, Rev. Mod. Phys. 51, 527 (1979)
CrossRef ADS Google scholar
[93]
Y. H. Lam, N. A. Smirnova, and E. Caurier, Isospin nonconservation in sd-shell nuclei, Phys. Rev. C 87, 054304 (2013)
CrossRef ADS Google scholar
[94]
P. Möller and J. R. Nix, Nuclear masses from a unified macroscopic-model, At. Data Nucl. Data Tables 39, 213 (1988)
CrossRef ADS Google scholar
[95]
M. Goeppert-Mayer, On closed shells in nuclei (II), Phys. Rev. 75, 1969 (1949)
CrossRef ADS Google scholar
[96]
I. Talmi, The shell model – Successes and limitations, Nucl. Phys. A 507, 295 (1990)
CrossRef ADS Google scholar
[97]
F. Wienholtz, D. Beck, K. Blaum, Ch. Borgmann, M. Breitenfeldt, , Masses of exotic calcium isotopes pin down nuclear forces, Nature 498, 346 (2013)
CrossRef ADS Google scholar
[98]
F. Sarazin, H. Savajols, W. Mittig, F. Nowacki, N. A. Orr, , Shape coexistence and the N= 28 shell closure far from stability, Hyperfine Interactions 132, 147 (2001)
CrossRef ADS Google scholar
[99]
A. Gade, R. V. F. Janssens, D. Bazin, R. Broda, B. A. Brown, , Cross-shell excitation in two-proton knockout: Structure of 52Ca, Phys. Rev. C 74, 021302 (2006)
CrossRef ADS Google scholar
[100]
R. V. F. Janssens, B. Fornal, P. F. Mantica, B. A. Brown, R. Broda, , Structure of 52,54Ti and shell closures in neutron-rich nuclei above 48Ca, Phys. Lett. B 546, 55 (2002)
CrossRef ADS Google scholar
[101]
J. I. Prisciandaro, P. F. Mantica, B. A. Brown, D. W. Anthony, M. W. Cooper, , New evidence for a subshell gap at N= 32, Phys. Lett. B 510, 17 (2001)
CrossRef ADS Google scholar
[102]
A. T. Gallant, J. C. Bale, T. Brunner, U. Chowdhury, S. Ettenauer, , New Precision Mass Measurements of Neutron-Rich Calcium and Potassium Isotopes and Three-Nucleon Forces, Phys. Rev. Lett. 109, 032506 (2012)
CrossRef ADS Google scholar
[103]
M. Wang, G. Audi, A. Wapstra, F. Kondev, M. Mac-Cormick, X. Xu, and B. Pfeiffer, The AME2012 atomic mass evaluation (II): Tables, graphs and references, Chin. Phys. C 36, 1603 (2012)
CrossRef ADS Google scholar
[104]
P. Möller, J. Nix, W. D. Myers, and W. J. Swiatecki, Nuclear ground-state masses and deformations, At. Data Nucl. Data Tables 59, 185 (1995)
CrossRef ADS Google scholar
[105]
H. Schatz, A. Aprahamian, J. Görres, M. Wiescher, T. Rauscher, J. F. Rembges, F.-K. Thielemann, B. Pfeiffer, P. Möller, K.-L. Kratz, H. Herndl, B. A. Brown, and H. Rebel, rp-process nucleosynthesis at extreme temperature and density conditions, Phys. Rep. 294, 167 (1998)
CrossRef ADS Google scholar
[106]
E. Haettner, D. Ackermann, G. Audi, K. Blaum, M. Block, , Mass measurements of very neutrondeficient Mo and Tc isotopes and their impact on rpprocess nucleosynthesis, Phys. Rev. Lett. 106, 122501 (2011)
CrossRef ADS Google scholar
[107]
H. Schatz, A. Aprahamian, V. Barnard, L. Bildsten, A. Cumming, M. Ouellette, T. Rauscher, F.-K. Thielemann, and M. Wiescher, End Point of the rpProcess on Accreting Neutron Stars, Phys. Rev. Lett. 86, 3471 (2001)
CrossRef ADS Google scholar
[108]
A. A. Valverde, M. Brodeur, G. Bollen, M. Eibach, K. Gulyuz, A. Hamaker, C. Izzo, W.-J. Ong, D. Puentes, M. Redshaw, R. Ringle, R. Sandler, S. Schwarz, C. S. Sumithrarachchi, J. Surbrook, A. C. C. Villari, and I. T. Yandow, High-precision mass measurement of 56Cu and the redirection of the rp-process flow, Phys. Rev. Lett. 120, 032701 (2018)
CrossRef ADS Google scholar
[109]
J. C. Hardy and I. S. Towner, New limits on fundamental weak-interaction parameters from superallowed β decay, Phys. Rev. Lett. 94, 092502 (2005)
CrossRef ADS Google scholar
[110]
J. C. Hardy and I. S.Towner, Superallowed 0+→0+ nuclear βdecays: 2014 critical survey, with precise results for Vud and CKM unitarity, Phys. Rev. C 91, 025501 (2015)
CrossRef ADS Google scholar
[111]
F. Molina, B. Rubio, Y. Fujita, W. Gelletly, J. Agramunt, , Tz=–1→0 β decays of 54Ni, 50Fe, 46Cr, and 42Ti and comparison with mirror (3He, t) measurements, Phys. Rev. C 91, 014301 (2015)
CrossRef ADS Google scholar
[112]
I. S. Towner and J. C. Hardy, Theoretical corrections and world data for the superallowed ft values in the βdecays of 42Ti, 46Cr, 50Fe, and 54Ni, Phys. Rev. C 92, 055505 (2015)
CrossRef ADS Google scholar
[113]
M. Wang, H. S. Xu, Y. H. Zhang, X. L. Tu, Yu. A. Litvinov and CSRe collaboration, Mass measurement of short-lived nuclei at HIRFL-CSR, EPJ Web of Conferences 66, 02107 (2014)
[114]
J. C. Yang, J. W. Xia, G. Q. Xiao, H. S. Xu, H. W. Zhao, , High Intensity heavy ion Accelerator Facility (HIAF) in China, Nucl. Instrum. Methods Phys. Res. B 317, 263 (2013)
CrossRef ADS Google scholar
[115]
X. Ma, W. Q. Wen, S. F. Zhang, D. Y. Yu, R. Cheng, , HIAF: New opportunities for atomic physics with highly charged heavy ions, Nucl. Instrum. Methods Phys. Res. B 408, 169 (2017)
CrossRef ADS Google scholar
[116]
Z. J. Wang, Proceedings of LINAC2012, Tel-Aviv, Israel, TUPB039
[117]
B. Wu, J. C. Yang, J. W. Xia, X. L. Yan, X. J. Hu, , HIAF: New opportunities for atomic physics with highly charged heavy ions, Nucl. Instrum. Methods Phys. Res. B 408, 169 (2017)
CrossRef ADS Google scholar
[118]
Yu. A. Litvinov and F. Bosch, Beta decay of highly charged ions, Rep. Prog. Phys. 74, 016301 (2011)
CrossRef ADS Google scholar
[119]
T. Stöhlker, Yu. A. Litvinov, and A. Bräuning-Demian, M. Lestinsky, F. Herfurth, R. Maier, D. Prasuhn, R. Schuch, M. Steck, for the SPARC Collaboration, SPARC collaboration: New strategy for storage ring physics at FAIR, Hyperfine Interact 227, 45 (2014)
CrossRef ADS Google scholar
[120]
P. M. Walker, Yu. A. Litvinov, and H. Geissel, The ILIMA project at FAIR, Int. J. Mass Spectr.349–350, 247 (2013)
CrossRef ADS Google scholar
[121]
T. Yamaguchia, Y. Yamaguchi, and A. Ozawa, The challenge of precision mass measurements of short-lived exotic nuclei: Development of a new storage ring mass spectrometry, Int. J. Mass Spectr.349–350, 240 (2013)
CrossRef ADS Google scholar
[122]
M. Grieser, Yu. A. Litvinov, R. Raabe, K. Blaum, Y. Blumenfeld, , Storage ring at HIE-ISOLDE, Eur. Phys. J.: Spec. Top. 207, 1 (2012)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(15224 KB)

Accesses

Citations

Detail

Sections
Recommended

/