The art of designing carbon allotropes

Run-Sen Zhang, Jin-Wu Jiang

PDF(7542 KB)
PDF(7542 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (1) : 13401. DOI: 10.1007/s11467-018-0836-5
REVIEW ARTICLE
REVIEW ARTICLE

The art of designing carbon allotropes

Author information +
History +

Abstract

Stimulated by the success of graphene and diamond, a variety of carbon allotropes have been discovered in recent years in either two-dimensional or three-dimensional configurations. Although these emerging carbon allotropes share some common features, they have certain different and novel mechanical or physical properties. In this review, we present a comparative survey of some of the major properties of fifteen newly discovered carbon allotropes. By comparing their structural topology, we propose a general route for designing most carbon allotropes from two mother structures, namely, graphene and diamond. Furthermore, we discuss several future prospects as well as current challenges in designing new carbon allotropes.

Keywords

carbon allotropes / mechanical properties

Cite this article

Download citation ▾
Run-Sen Zhang, Jin-Wu Jiang. The art of designing carbon allotropes. Front. Phys., 2019, 14(1): 13401 https://doi.org/10.1007/s11467-018-0836-5

References

[1]
R. Hoffmann, A. A. Kabanov, A. A. Golov, and D. M. Proserpio, Homo Citans and carbon allotropes: For an ethics of citation, Angew. Chem. Int. Ed. 55(37), 10962 (2016)
CrossRef ADS Google scholar
[2]
A. E. Cass, G. Davis, G. D. Francis, H. A. O. Hill, W. J. Aston, I. J. Higgins, E. V. Plotkin, L. D. Scott, and A. P. Turner, Ferrocene-mediated enzyme electrode for amperometric determination of glucose, Anal. Chem. 56(4), 667 (1984)
CrossRef ADS Google scholar
[3]
D. Aurbach, B. Markovsky, I. Weissman, E. Levi, and Y. Ein-Eli, On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries, Electrochim. Acta 45(1–2), 67 (1999)
CrossRef ADS Google scholar
[4]
J. F. Rusling and A. E. F. Nassar, Enhanced electron transfer for myoglobin in surfactant films on electrodes, J. Am. Chem. Soc. 115(25), 11891 (1993)
CrossRef ADS Google scholar
[5]
D. Aurbach, B. Markovsky, A. Shechter, Y. Ein-Eli, and H. Cohen, A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures, J. Electrochem. Soc. 143(12), 3809 (1996)
CrossRef ADS Google scholar
[6]
M. Lichinchi, C. Lenardi, J. Haupt, and R. Vitali, Simulation of Berkovich nanoindentation experiments on thin films using finite element method, Thin Solid Films 312(1–2), 240 (1998)
CrossRef ADS Google scholar
[7]
R. Saha, Z. Xue, Y. Huang, and W. D. Nix, Indentation of a soft metal film on a hard substrate: Strain gradient hardening effects, J. Mech. Phys. Solids 49(9), 1997 (2001)
CrossRef ADS Google scholar
[8]
J. Cao, Y. Wu, D. Lu, M. Fujimoto, and M. Nomura, Material removal behavior in ultrasonic-assisted scratching of SiC ceramics with a single diamond tool, Int. J. Mach. Tools Manuf. 79, 49 (2014)
CrossRef ADS Google scholar
[9]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
CrossRef ADS Google scholar
[10]
H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, C60: Buckminsterfullerene, Nature 318(6042), 162 (1985)
CrossRef ADS Google scholar
[11]
F. Diederich and M. Kivala, All-carbon scaffolds by rational design, Adv. Mater. 22(7), 803 (2010)
CrossRef ADS Google scholar
[12]
C. Hug and S. W. Cranford, Sparse fulleryne structures enhance potential hydrogen storage and mobility, J. Mater. Chem. A 5, 21223 (2017)
CrossRef ADS Google scholar
[13]
J. Cremers, R. Haver, M. Rickhaus, J. Q. Gong, L. Favereau, M. D. Peeks, T. Claridge, L. M. Herz, and H. L. Anderson, Template-directed synthesis of a conjugated zinc porphyrin nanoball, J. Am. Chem. Soc. 140(16), 5352 (2018)
CrossRef ADS Google scholar
[14]
E. Estrada and Y. Sim’on-Manso, Escherynes: Novel carbon allotropes with belt shapes, Chem. Phys. Lett. 548, 80 (2012)
CrossRef ADS Google scholar
[15]
A. Kochaev, A. Karenin, R. Meftakhutdinov, and R. Brazhe, 2D supracrystals as a promising materials for planar nanoacoustoelectronics, J. Phys.: Conf. Ser. 345, 012007 (2012)
CrossRef ADS Google scholar
[16]
E. Belenkov and I. Shakhova, Structure of carbinoid nanotubes and carbinofullerenes, Phys. Solid State 53(11), 2385 (2011)
CrossRef ADS Google scholar
[17]
A. N. Enyashin and A. L. Ivanovskii, Graphene allotropes,physica status solidi (b) 248, 1879 (2011)
[18]
J. B. Goodenough, Evolution of strategies for modern rechargeable batteries, Acc. Chem. Res. 46(5), 1053 (2013)
CrossRef ADS Google scholar
[19]
Z. Ogumi and H. Wang, Carbon Anode Materials, Springer, 2009
[20]
D. H. Doughty, Materials issues in lithium ion rechargeable battery technology, Sampe Journal 32, 75 (1995)
[21]
K. McElhaney, J. Vlassak, and W. Nix, Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments, J. Mater. Res. 13(05), 1300 (1998)
CrossRef ADS Google scholar
[22]
A. Richter, R. Ries, R. Smith, M. Henkel, and B. Wolf, Nanoindentation of diamond, graphite and fullerene films, Diamond Related Materials 9(2), 170 (2000)
CrossRef ADS Google scholar
[23]
W. Ni, Y. T. Cheng, and D. S. Grummon, Microscopic superelastic behavior of a nickel-titanium alloy under complex loading conditions, Appl. Phys. Lett. 82(17), 2811 (2003)
CrossRef ADS Google scholar
[24]
D. J. Sprouster, S. Ruffell, J. E. Bradby, J. S. Williams, M. N. Lockrey, M. R. Phillips, R. C. Major, and O. L. Warren, Structural characterization of B-doped diamond nanoindentation tips, J. Mater. Res. 26(24), 3051 (2011)
CrossRef ADS Google scholar
[25]
C. Soutis, Fibre reinforced composites in aircraft construction, Prog. Aerosp. Sci. 41(2), 143 (2005)
CrossRef ADS Google scholar
[26]
U. Meier, Strengthening of structures using carbon fibre/ epoxy composites, Constr. Build. Mater. 9(6), 341 (1995)
CrossRef ADS Google scholar
[27]
C. Soutis, Carbon fiber reinforced plastics in aircraft construction, Mater. Sci. Eng. A 412(1–2), 171 (2005)
CrossRef ADS Google scholar
[28]
D. Chung, Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing, Carbon 50(9), 3342 (2012)
CrossRef ADS Google scholar
[29]
N. Song, X. Gao, Z. Ma, X. Wang, Y. Wei, and C. Gao, A review of graphene-based separation membrane: Materials, characteristics, preparation and applications, Desalination 437, 59 (2018)
CrossRef ADS Google scholar
[30]
A. D. Oyedele, C. M. Rouleau, D. B. Geohegan, and K. Xiao, The growth and assembly of organic molecules and inorganic 2D materials on graphene for van der Waals heterostructures, Carbon 131, 246 (2018)
CrossRef ADS Google scholar
[31]
J. W. Jiang, Graphene versus MoS2: A short review, Front. Phys. 10(3), 287 (2015)
CrossRef ADS Google scholar
[32]
F. Meng, H. Wang, F. Huang, Y. Guo, Z. Wang, D. Hui, and Z. Zhou, Graphene-based microwave absorbing composites: A review and prospective, Compos. Part B Eng. 137, 260 (2018)
CrossRef ADS Google scholar
[33]
M. Ye, Z. Zhang, Y. Zhao, and L. Qu, Graphene platforms for smart energy generation and storage, Joule 2, 245 (2017)
CrossRef ADS Google scholar
[34]
A. Darbandi, E. Gottardo, J. Huff, M. Stroscio, and T. Shokuhfar, A review of the cell to graphene-based nanomaterial interface, JOM 70(4), 566 (2018)
CrossRef ADS Google scholar
[35]
M. J. Allen, V. C. Tung, and R. B. Kaner, Honeycomb carbon: A review of graphene, Chem. Rev. 110(1), 132 (2010)
CrossRef ADS Google scholar
[36]
V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, Graphene based materials: Past, present and future, Prog. Mater. Sci. 56(8), 1178 (2011)
CrossRef ADS Google scholar
[37]
A. A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater. 10(8), 569 (2011)
CrossRef ADS Google scholar
[38]
F. Schwierz, Graphene transistors, Nat. Nanotechnol. 5(7), 487 (2010)
CrossRef ADS Google scholar
[39]
F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, Graphene photonics and optoelectronics, Nature Photon. 4, 611 (2010)
CrossRef ADS Google scholar
[40]
A. K. Geim, Graphene: Status and prospects, Science 324, 1530 (2009)
CrossRef ADS Google scholar
[41]
Y. V. Pleskov, Electrochemistry of diamond: A review, Russ. J. Electrochem. 38(12), 1275 (2002)
CrossRef ADS Google scholar
[42]
O. Auciello and A. V. Sumant, Status review of the science and technology of ultrananocrystalline diamond (UNCD™) films and application to multifunctional devices, Diamond Related Materials 19(7–9), 699 (2010)
[43]
J. P. Goss, Theory of hydrogen in diamond, J. Phys.: Condens. Matter 15(17), R551 (2003)
CrossRef ADS Google scholar
[44]
J. N. Coleman, U. Khan, W. J. Blau, and Y. K. Gun’ko, Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites, Carbon 44(9), 1624 (2006)
CrossRef ADS Google scholar
[45]
Q. Cao and J. A. Rogers, Ultrathin films of single-walled carbon nanotubes for electronics and sensors: A review of fundamental and applied aspects, Adv. Mater. 21(1), 29 (2009)
CrossRef ADS Google scholar
[46]
W. Bauhofer and J. Z. Kovacs, A review and analysis of electrical percolation in carbon nanotube polymer composites, Compos. Sci. Technol. 69(10), 1486 (2009)
CrossRef ADS Google scholar
[47]
J. Wang, Carbon-nanotube based electrochemical biosensors: A review, Electroanalysis 17(1), 7 (2005)
CrossRef ADS Google scholar
[48]
O. Breuer and U. Sundararaj, Big returns from small fibers: A review of polymer/carbon nanotube composites, Polym. Compos. 25(6), 630 (2004)
CrossRef ADS Google scholar
[49]
J. M. Schulman and R. L. Disch, A theoretical study of large planar [n]phenylenes, J. Phys. Chem. A 111(39), 10010 (2007)
CrossRef ADS Google scholar
[50]
S. Zhang, J. Zhou, Q. Wang, X. Chen, Y. Kawazoe, and P. Jena, Penta-graphene: A new carbon allotrope, Proc. Natl. Acad. Sci. U.S.A. 112(8), 2372 (2015)
CrossRef ADS Google scholar
[51]
J. W. Jiang, J. Leng, J. Li, Z. Guo, T. Chang, X. Guo, and T. Zhang, Twin graphene: A novel two-dimensional semiconducting carbon allotrope, Carbon 118, 370 (2017)
CrossRef ADS Google scholar
[52]
R. Baughman, H. Eckhardt, and M. Kertesz, Structure‐property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms, J. Chem. Phys. 87(11), 6687 (1987)
CrossRef ADS Google scholar
[53]
Z. Wang, X. F. Zhou, X. Zhang, Q. Zhu, H. Dong, M. Zhao, and A. R. Oganov, Phagraphene: A low-energy graphene allotrope composed of 5–6–7 carbon rings with distorted Dirac cones, Nano Lett. 15(9), 6182 (2015)
CrossRef ADS Google scholar
[54]
F. Schlütter, T. Nishiuchi, V. Enkelmann, and K. Müllen, Octafunctionalized biphenylenes: Molecular precursors for isomeric graphene nanostructures, Angew. Chem. Int. Ed. 53(6), 1538 (2014)
CrossRef ADS Google scholar
[55]
C. X. Zhao, C. Y. Niu, Z. J. Qin, X. Y. Ren, J. T. Wang, J. H. Cho, and Y. Jia, H18 carbon: A new metallic phase with sp2-sp3 hybridized bonding network, Sci. Rep. 6(1), 21879 (2016)
CrossRef ADS Google scholar
[56]
Q. Song, B. Wang, K. Deng, X. Feng, M. Wagner, J. D. Gale, K. Müllen, and L. Zhi, Graphenylene, a unique two-dimensional carbon network with nondelocalized cyclohexatriene units, J. Mater. Chem. C 1(1), 38 (2013)
CrossRef ADS Google scholar
[57]
A. T. Koch, A. H. Khoshaman, H. D. Fan, G. A. Sawatzky, and A. Nojeh, Graphenylene Nanotubes, J. Phys. Chem. Lett. 6(19), 3982 (2015)
CrossRef ADS Google scholar
[58]
L. Zhu, Y. Jin, Q. Xue, X. Li, H. Zheng, T. Wu, and C. Ling, Theoretical study of a tunable and strain-controlled nanoporous graphenylene membrane for multifunctional gas separation, J. Mater. Chem. A 4(39), 15015 (2016)
CrossRef ADS Google scholar
[59]
W. Liu, M. Miao, and J. y. Liu, Band gap engineering of graphenylene by hydrogenation and halogenation: A density functional theory study,RSC Advances 5(87), 70766 (2015)
CrossRef ADS Google scholar
[60]
G. Fabris, N. Marana, E. Longo, and J. Sambrano, Theoretical study of porous surfaces derived from graphene and boron nitride, J. Solid State Chem. 258, 247 (2018)
CrossRef ADS Google scholar
[61]
Y. Qu, F. Li, and M. Zhao, Efficient 3He/4He separation in a nanoporous graphenylene membrane, Phys. Chem. Chem. Phys. 19(32), 21522 (2017)
CrossRef ADS Google scholar
[62]
A. Balaban, C. C. Rentia, and E. Ciupitu, Estimation of relative stability of several planar and tridimensional lattices for elementary carbon, Rev. Roum. Chim. 13, 231 (1968)
[63]
Q. S. Du, P. D. Tang, H. L. Huang, F. L. Du, K. Huang, N. Z. Xie, S. Y. Long, Y. M. Li, J. S. Qiu, and R. B. Huang, A new type of two-dimensional carbon crystal prepared from 1, 3, 5-trihydroxybenzene, Sci. Rep. 7(1), 40796 (2017)
CrossRef ADS Google scholar
[64]
R. Totani, C. Grazioli, T. Zhang, I. Bidermane, J. Lüder, M. de Simone, M. Coreno, B. Brena, L. Lozzi, and C. Puglia, Electronic structure investigation of biphenylene films, J. Chem. Phys. 146(5), 054705 (2017)
CrossRef ADS Google scholar
[65]
M. Bieri, M. Treier, J. Cai, K. Aït-Mansour, P. Ruffieux, O. Gröning, P. Gröning, M. Kastler, R. Rieger, X. Feng, K. Müllen, and R. Fasel, Porous graphenes: Twodimensional polymer synthesis with atomic precision, Chem. Commun. 45(45), 6919 (2009)
CrossRef ADS Google scholar
[66]
Y. X. Yu, Graphenylene: A promising anode material for lithium-ion batteries with high mobility and storage, J. Mater. Chem. A 1(43), 13559 (2013)
CrossRef ADS Google scholar
[67]
S. Rouhi and A. Ghasemi, Investigation of the elastic properties of graphenylene using molecular dynamics simulations, Mater. Res. 20(1), 1 (2016)
CrossRef ADS Google scholar
[68]
H. Lu and S. D. Li, Two-dimensional carbon allotropes from graphene to graphyne, J. Mater. Chem. C 1(23), 3677 (2013)
CrossRef ADS Google scholar
[69]
G. Brunetto, P. Autreto, L. Machado, B. Santos, R. P. Dos Santos, and D. S. Galvao, Nonzero gap twodimensional carbon allotrope from porous graphene, J. Phys. Chem. C 116(23), 12810 (2012)
CrossRef ADS Google scholar
[70]
M. De La Pierre, P. Karamanis, J. Baima, R. Orlando, C. Pouchan, and R. Dovesi, Ab Initioperiodic simulation of the spectroscopic and optical properties of novel porous graphene phases, J. Phys. Chem. C 117(5), 2222 (2013)
CrossRef ADS Google scholar
[71]
G. S. Fabris, C. E. Junkermeier, and R. Paupitz, Porous graphene and graphenylene nanotubes: Electronic structure and strain effects, Comput. Mater. Sci. 140, 344 (2017)
CrossRef ADS Google scholar
[72]
M. Hankel and D. J. Searles, Lithium storage on carbon nitride, graphenylene and inorganic graphenylene, Phys. Chem. Chem. Phys. 18(21), 14205 (2016)
CrossRef ADS Google scholar
[73]
O. Rahaman, B. Mortazavi, A. Dianat, G. Cuniberti, and T. Rabczuk, Metamorphosis in carbon network: From penta-graphene to biphenylene under uniaxial tension, FlatChem 1, 65 (2017)
CrossRef ADS Google scholar
[74]
M. Q. Le, Mechanical properties of penta-graphene, hydrogenated penta-graphene, and penta-CN2 sheets, Comput. Mater. Sci. 136, 181 (2017)
CrossRef ADS Google scholar
[75]
C. P. Ewels, X. Rocquefelte, H. W. Kroto, M. J. Rayson, P. R. Briddon, and M. I. Heggie, Predicting experimentally stable allotropes: Instability of penta-graphene, Proc. Natl. Acad. Sci. USA 112(51), 15609 (2015)
CrossRef ADS Google scholar
[76]
Z. Wang, F. Dong, B. Shen, R. Zhang, Y. Zheng, L. Chen, S. Wang, C. Wang, K. Ho, Y.-J. Fan, et al., Electronic and optical properties of novel carbon allotropes, Carbon 101, 77 (2016)
CrossRef ADS Google scholar
[77]
H. Einollahzadeh, R. Dariani, and S. Fazeli, Computing the band structure and energy gap of penta-graphene by using DFT and G0W0 approximations, Solid State Commun. 229, 1 (2016)
CrossRef ADS Google scholar
[78]
T. Stauber, J. Beltr’an, and J. Schliemann, Tight-binding approach to penta-graphene, Sci. Rep. 6(1), 22672 (2016)
CrossRef ADS Google scholar
[79]
X. Li, S. Zhang, F. Q. Wang, Y. Guo, J. Liu, and Q. Wang, Tuning the electronic and mechanical properties of penta-graphene via hydrogenation and fluorination, Phys. Chem. Chem. Phys. 18(21), 14191 (2016)
CrossRef ADS Google scholar
[80]
S. W. Cranford, When is 6 less than 5? Penta- to hexagraphene transition, Carbon 96, 421 (2016)
CrossRef ADS Google scholar
[81]
H. Sun, S. Mukherjee, and C. V. Singh, Mechanical properties of monolayer penta-graphene and phagraphene: a first-principles study, Phys. Chem. Chem. Phys. 18(38), 26736 (2016)
CrossRef ADS Google scholar
[82]
Y. Zhang, Q. Pei, Z. Sha, Y. Zhang, and H. Gao, Remarkable enhancement in failure stress and strain of penta-graphene via chemical functionalization, Nano Res. 10(11), 3865 (2017)
CrossRef ADS Google scholar
[83]
S. Ebrahimi, Effect of hydrogen coverage on the buckling of penta-graphene by molecular dynamics simulation, Mol. Simul. 42(17), 1485 (2016)
CrossRef ADS Google scholar
[84]
Z. G. Yu and Y. W. Zhang, A comparative density functional study on electrical properties of layered pentagraphene, J. Appl. Phys. 118(16), 165706 (2015)
CrossRef ADS Google scholar
[85]
G. Berdiyorov, G. Dixit, and M. Madjet, Band gap engineering in penta-graphene by substitutional doping: first-principles calculations, J. Phys.: Condens. Matter 28(47), 475001 (2016)
CrossRef ADS Google scholar
[86]
J. Quijano-Briones, H. Fernández-Escamilla, and A. Tlahuice-Flores, Doped penta-graphene and hydrogenation of its related structures: a structural and electronic DFT-D study, Phys. Chem. Chem. Phys. 18(23), 15505 (2016)
CrossRef ADS Google scholar
[87]
G. R. Berdiyorov and M. E. A. Madjet, First-principles study of electronic transport and optical properties of penta-graphene, penta-SiC2 and penta-CN2, RSC Advances 6(56), 50867 (2016)
CrossRef ADS Google scholar
[88]
J. I. G. Enriquez and A. R. C. Villagracia, Hydrogen adsorption on pristine, defected, and 3d-block transition metal-doped penta-graphene, Int. J. Hydrogen Energy 41(28), 12157 (2016)
CrossRef ADS Google scholar
[89]
H. Einollahzadeh, S. M. Fazeli, and R. S. Dariani, Studying the electronic and phononic structure of pentagraphane, Sci. Technol. Adv. Mater. 17(1), 610 (2016)
CrossRef ADS Google scholar
[90]
B. Rajbanshi, S. Sarkar, B. Mandal, and P. Sarkar, Energetic and electronic structure of penta-graphene nanoribbons, Carbon 100, 118 (2016)
CrossRef ADS Google scholar
[91]
P. Yuan, Z. Zhang, Z. Fan, and M. Qiu, Electronic structure and magnetic properties of penta-graphene nanoribbons, Phys. Chem. Chem. Phys. 19(14), 9528 (2017)
CrossRef ADS Google scholar
[92]
W. Xu, G. Zhang, and B. Li, Thermal conductivity of penta-graphene from molecular dynamics study, J. Chem. Phys. 143(15), 154703 (2015)
CrossRef ADS Google scholar
[93]
H. Liu, G. Qin, Y. Lin, and M. Hu, Disparate strain dependent thermal conductivity of two-dimensional pentastructures, Nano Lett. 16(6), 3831 (2016)
CrossRef ADS Google scholar
[94]
F. Q. Wang, J. Yu, Q. Wang, Y. Kawazoe, and P. Jena, Lattice thermal conductivity of penta-graphene, Carbon 105, 424 (2016)
CrossRef ADS Google scholar
[95]
X. Wu, V. Varshney, J. Lee, T. Zhang, J. L. Wohlwend, A. K. Roy, and T. Luo, Hydrogenation of penta-graphene leads to unexpected large improvement in thermal conductivity, Nano Lett. 16(6), 3925 (2016)
CrossRef ADS Google scholar
[96]
F. Q. Wang, J. Liu, X. Li, Q. Wang, and Y. Kawazoe, Weak interlayer dependence of lattice thermal conductivity on stacking thickness of penta-graphene, Appl. Phys. Lett. 111(19), 192102 (2017)
CrossRef ADS Google scholar
[97]
Y. Y. Zhang, Q. X. Pei, Y. Cheng, Y. W. Zhang, and X. Zhang, Thermal conductivity of penta-graphene: The role of chemical functionalization, Comput. Mater. Sci. 137, 195 (2017)
CrossRef ADS Google scholar
[98]
R. Krishnan, W. S. Su, and H. T. Chen, A new carbon allotrope: Penta-graphene as a metal-free catalyst for CO oxidation, Carbon 114, 465 (2017)
CrossRef ADS Google scholar
[99]
B. Xiao, Y.-C. Li, X.-F. Yu, and J.-B. Cheng, Pentagraphene: A promising anode material as the Li/Na-ion battery with both extremely high theoretical capacity and fast charge/discharge rate, ACS Appl. Mater. Interfaces 8, 35342 (2016)
CrossRef ADS Google scholar
[100]
Q. Lu, M. Arroyo, and R. Huang, Elastic bending modulus of monolayer graphene, J. Phys. D Appl. Phys. 42(10), 102002 (2009)
CrossRef ADS Google scholar
[101]
M. M. Haley, S. C. Brand, and J. J. Pak, Carbon networks based on dehydrobenzoannulenes: Synthesis of graphdiyne substructures, Angew. Chem. Int. Ed. Engl. 36(8), 836 (1997)
CrossRef ADS Google scholar
[102]
G. Li, Y. Li, H. Liu, Y. Guo, Y. Li, and D. Zhu, Architecture of graphdiyne nanoscale films, Chem. Commun. (Camb.) 46(19), 3256 (2010)
CrossRef ADS Google scholar
[103]
Y. Q. Zhang, N. Kepčija, M. Kleinschrodt, K. Diller, S. Fischer, A. C. Papageorgiou, F. Allegretti, J. Björk, S. Klyatskaya, F. Klappenberger, M. Ruben, and J. V. Barth, Homo-coupling of terminal alkynes on a noble metal surface, Nat. Commun. 3(1), 1286 (2012)
CrossRef ADS Google scholar
[104]
A. Ivanovskii, Graphynes and graphdyines, Prog. Solid State Chem. 41(1–2), 1 (2013)
[105]
Q. Peng, J. Crean, L. Han, S. Liu, X. Wen, S. De, and A. Dearden, New materials graphyne, graphdiyne, graphone, and graphane: Review of properties, synthesis, and application in nanotechnology, Nanotechnol. Sci. Appl. 7, 1 (2014)
CrossRef ADS Google scholar
[106]
Y. Li, L. Xu, H. Liu, and Y. Li, Graphdiyne and graphyne: From theoretical predictions to practical construction, Chem. Soc. Rev. 43(8), 2572 (2014)
CrossRef ADS Google scholar
[107]
Z. Chen, C. Molina-Jirón, S. Klyatskaya, F. Klappenberger, and M. Ruben, 1D and 2D graphdiynes: Recent advances on the synthesis at interfaces and potential nanotechnological applications, Ann. Phys. 529(11), 1700056 (2017)
CrossRef ADS Google scholar
[108]
F. Chang, L. Huang, Y. Li, C. Guo, and Q. Diao, A short review of synthesis of graphdiyne and its potential applications, Int. J. Electrochem. Sci. 12, 10348 (2017)
CrossRef ADS Google scholar
[109]
X. Zhang, M. Zhu, P. Chen, Y. Li, H. Liu, Y. Li, and M. Liu, Pristine graphdiyne-hybridized photocatalysts using graphene oxide as a dual-functional coupling reagent, Phys. Chem. Chem. Phys. 17(2), 1217 (2015)
CrossRef ADS Google scholar
[110]
H. Qi, P. Yu, Y. Wang, G. Han, H. Liu, Y. Yi, Y. Li, and L. Mao, Graphdiyne oxides as excellent substrate for electroless deposition of Pd clusters with high catalytic activity, J. Am. Chem. Soc. 137(16), 5260 (2015)
CrossRef ADS Google scholar
[111]
L. Sun, P. Jiang, H. Liu, D. Fan, J. Liang, J. Wei, L. Cheng, J. Zhang, and J. Shi, Graphdiyne: A twodimensional thermoelectric material with high figure of merit, Carbon 90, 255 (2015)
CrossRef ADS Google scholar
[112]
N. Narita, S. Nagai, S. Suzuki, and K. Nakao, Optimized geometries and electronic structures of graphyne and its family, Phys. Rev. B 58(16), 11009 (1998)
CrossRef ADS Google scholar
[113]
H. Bai, Y. Zhu, W. Qiao, and Y. Huang, Structures, stabilities and electronic properties of graphdiyne nanoribbons, RSC Advances 1(5), 768 (2011)
CrossRef ADS Google scholar
[114]
S. W. Cranford and M. J. Buehler, Mechanical properties of graphyne, Carbon 49(13), 4111 (2011)
CrossRef ADS Google scholar
[115]
Y. Yang and X. Xu, Mechanical properties of graphyne and its family – A molecular dynamics investigation, Comput. Mater. Sci. 61, 83 (2012)
CrossRef ADS Google scholar
[116]
Q. Peng, W. Ji, and S. De, Mechanical properties of graphyne monolayers: a first-principles study, Phys. Chem. Chem. Phys. 14(38), 13385 (2012)
CrossRef ADS Google scholar
[117]
S. Ajori, R. Ansari, and M. Mirnezhad, Mechanical properties of defective g-graphyne using molecular dynamics simulations, Mater. Sci. Eng. A 561, 34 (2013)
CrossRef ADS Google scholar
[118]
S. Ma, M. Zhang, L. Sun, and K. Zhang, Hightemperature behavior of monolayer graphyne and graphdiyne, Carbon 99, 547 (2016)
CrossRef ADS Google scholar
[119]
Q. Yue, S. Chang, J. Kang, S. Qin, and J. Li, Mechanical and electronic properties of graphyne and its family under elastic strain: Theoretical predictions, J. Phys. Chem. C 117(28), 14804 (2013)
CrossRef ADS Google scholar
[120]
S. W. Cranford, D. B. Brommer, and M. J. Buehler, Extended graphynes: simple scaling laws for stiffness, strength and fracture, Nanoscale 4(24), 7797 (2012)
CrossRef ADS Google scholar
[121]
Y. Y. Zhang, Q. X. Pei, and C. M. Wang, Mechanical properties of graphynes under tension: A molecular dynamics study, Appl. Phys. Lett. 101, 666 (2012)
CrossRef ADS Google scholar
[122]
Y. Pei, Mechanical properties of graphdiyne sheet, Physica B 407(22), 4436 (2012)
CrossRef ADS Google scholar
[123]
M. M. Haley, Synthesis and properties of annulenic subunits of graphyne and graphdiyne nanoarchitectures, Pure Appl. Chem. 80(3), 519 (2008)
CrossRef ADS Google scholar
[124]
G. Luo, X. Qian, H. Liu, R. Qin, J. Zhou, L. Li, Z. Gao, E. Wang, W. N. Mei, J. Lu, Y. Li, and S. Nagase, Quasiparticle energies and excitonic effects of the two-dimensional carbon allotrope graphdiyne: Theory and experiment, Phys. Rev. B 84(7), 075439 (2011)
CrossRef ADS Google scholar
[125]
Y. Jiao, A. Du, M. Hankel, Z. Zhu, V. Rudolph, and S. C. Smith, Graphdiyne: A versatile nanomaterial for electronics and hydrogen purification, Chem. Commun. 47(43), 11843 (2011)
CrossRef ADS Google scholar
[126]
G. M. Psofogiannakis and G. E. Froudakis, Computational prediction of new hydrocarbon materials: The hydrogenated forms of graphdiyne, J. Phys. Chem. C 116(36), 19211 (2012)
CrossRef ADS Google scholar
[127]
M. Long, L. Tang, D. Wang, Y. Li, and Z. Shuai, Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: Theoretical predictions, ACS Nano 5(4), 2593 (2011)
CrossRef ADS Google scholar
[128]
S. Jalili, F. Houshmand, and J. Schofield, Study of carrier mobility of tubular and planar graphdiyne, Appl. Phys. A 119(2), 571 (2015)
CrossRef ADS Google scholar
[129]
J. Xi, M. Long, L. Tang, D. Wang, and Z. Shuai, Firstprinciples prediction of charge mobility in carbon and organic nanomaterials, Nanoscale 4(15), 4348 (2012)
CrossRef ADS Google scholar
[130]
H. J. Cui, X. L. Sheng, Q. B. Yan, Q. R. Zheng, and G. Su, Strain-induced Dirac cone-like electronic structures and semiconductor–semimetal transition in graphdiyne, Phys. Chem. Chem. Phys. 15(21), 8179 (2013)
CrossRef ADS Google scholar
[131]
K. Krishnamoorthy, S. Thangavel, J. C. Veetil, N. Raju, G. Venugopal, and S. J. Kim, Graphdiyne nanostructures as a new electrode material for electrochemical supercapacitors, International Journal of Hydrogen Energy 41, 1672 (2016)
CrossRef ADS Google scholar
[132]
K. Srinivasu and S. K. Ghosh, Graphyne and graphdiyne: Promising materials for nanoelectronics and energy storage applications, J. Phys. Chem. C 116(9), 5951 (2012)
CrossRef ADS Google scholar
[133]
C. Sun and D. J. Searles, Lithium storage on graphdiyne predicted by DFT calculations, J. Phys. Chem. C 116(50), 26222 (2012)
CrossRef ADS Google scholar
[134]
H. Zhang, Y. Xia, H. Bu, X. Wang, M. Zhang, Y. Luo, and M. Zhao, Graphdiyne: A promising anode material for lithium ion batteries with high capacity and rate capability, J. Appl. Phys. 113(4), 044309 (2013)
CrossRef ADS Google scholar
[135]
B. Jang, J. Koo, M. Park, H. Lee, J. Nam, Y. Kwon, and H. Lee, Graphdiyne as a high-capacity lithium ion battery anode material, Appl. Phys. Lett. 103(26), 263904 (2013)
CrossRef ADS Google scholar
[136]
S. Zhang, H. Du, J. He, C. Huang, H. Liu, G. Cui, and Y. Li, Nitrogen-doped graphdiyne applied for lithium-ion storage, ACS Appl. Mater. Interfaces 8, 8467 (2016)
CrossRef ADS Google scholar
[137]
H. Du, H. Yang, C. Huang, J. He, H. Liu, and Y. Li, Graphdiyne applied for lithium-ion capacitors displaying high power and energy densities, Nano Energy 22, 615 (2016)
CrossRef ADS Google scholar
[138]
S. Zhang, H. Liu, C. Huang, G. Cui, and Y. Li, Bulk graphdiyne powder applied for highly efficient lithium storage, Chem. Commun. 51(10), 1834 (2015)
CrossRef ADS Google scholar
[139]
C. Huang, S. Zhang, H. Liu, Y. Li, G. Cui, and Y. Li, Graphdiyne for high capacity and long-life lithium storage, Nano Energy 11, 481 (2015)
CrossRef ADS Google scholar
[140]
H. Yu, A. Du, Y. Song, and D. J. Searles, Graphyne and graphdiyne: Versatile catalysts for dehydrogenation of light metal complex hydrides, J. Phys. Chem. C 117(42), 21643 (2013)
CrossRef ADS Google scholar
[141]
R. Liu, H. Liu, Y. Li, Y. Yi, X. Shang, S. Zhang, X. Yu, S. Zhang, H. Cao, and G. Zhang, Nitrogen-doped graphdiyne as a metal-free catalyst for high-performance oxygen reduction reactions, Nanoscale 6(19), 11336 (2014)
CrossRef ADS Google scholar
[142]
J. Li, X. Gao, B. Liu, Q. Feng, X. B. Li, M. Y. Huang, Z. Liu, J. Zhang, C. H. Tung, and L. Z. Wu, Graphdiyne: A metal-free material as hole transfer layer to fabricate quantum dot-sensitized photocathodes for hydrogen production, J. Am. Chem. Soc. 138(12), 3954 (2016)
CrossRef ADS Google scholar
[143]
S. W. Cranford and M. J. Buehler, Selective hydrogen purification through graphdiyne under ambient temperature and pressure, Nanoscale 4(15), 4587 (2012)
CrossRef ADS Google scholar
[144]
L. F. C. Pereira, B. Mortazavi, M. Makaremi, and T. Rabczuk, Anisotropic thermal conductivity and mechanical properties of phagraphene: A molecular dynamics study, RSC Advances 6(63), 57773 (2016)
CrossRef ADS Google scholar
[145]
D. Wu, S. Wang, J. Yuan, B. Yang, and H. Chen, Modulation of the electronic and mechanical properties of phagraphene via hydrogenation and fluorination, Phys. Chem. Chem. Phys. 19(19), 11771 (2017)
CrossRef ADS Google scholar
[146]
A. Lopez-Bezanilla, Strain-mediated modification of phagraphene Dirac cones, J. Phys. Chem. C 120(30), 17101 (2016)
CrossRef ADS Google scholar
[147]
A. Luo, R. Hu, Z. Fan, H. Zhang, J. Yuan, C. Yang, and Z. Zhang, Electronic structure, carrier mobility and device properties for mixed-edge phagraphene nanoribbon by hetero-atom doping, Org. Electron. 51, 277 (2017)
CrossRef ADS Google scholar
[148]
Y. Liu, Z. Chen, L. Tong, J. Zhang, and D. Sun, Effect of edge-hydrogen passivation and nanometer size on the electronic properties of phagraphene ribbons, Comput. Mater. Sci. 117, 279 (2016)
CrossRef ADS Google scholar
[149]
P. Yuan, Z. Fan, and Z. Zhang, Magneto-electronic properties and carrier mobility in phagraphene nanoribbons: A theoretical prediction, Carbon 124, 228 (2017)
CrossRef ADS Google scholar
[150]
D. Ferguson, D. J. Searles, and M. Hankel, Biphenylene and phagraphene as lithium ion battery anode materials, ACS Appl. Mater. Interfaces 9, 20577 (2017)
CrossRef ADS Google scholar
[151]
W. C. Lothrop, Biphenylene, J. Am. Chem. Soc. 63(5), 1187 (1941)
CrossRef ADS Google scholar
[152]
N. Yedla, P. Gupta, T. Y. Ng, and K. Geethalakshmi, Effect of loading direction and defects on the strength and fracture behavior of biphenylene based graphene monolayer, Mater. Chem. Phys. 202, 127 (2017)
CrossRef ADS Google scholar
[153]
M. A. Hudspeth, B. W. Whitman, V. Barone, and J. E. Peralta, Electronic properties of the biphenylene sheet and its one-dimensional derivatives, ACS Nano 4(8), 4565 (2010)
CrossRef ADS Google scholar
[154]
P. A. Denis, Stability and electronic properties of biphenylene based functionalized nanoribbons and sheets, J. Phys. Chem. C 118(43), 24976 (2014)
CrossRef ADS Google scholar
[155]
S. Wang, Optical response and excitonic effects in graphene nanoribbons derived from biphenylene, Mater. Lett. 167, 258 (2016)
CrossRef ADS Google scholar
[156]
P. A. Denis and F. Iribarne, Hydrogen storage in doped biphenylene based sheets, Comput. Theor. Chem. 1062, 30 (2015)
CrossRef ADS Google scholar
[157]
J. Liu, T. Zhao, S. Zhang, and Q. Wang, A new metallic carbon allotrope with high stability and potential for lithium ion battery anode material, Nano Energy 38, 263 (2017)
CrossRef ADS Google scholar
[158]
Y. Cheng, R. Melnik, Y. Kawazoe, and B. Wen, Three dimensional metallic carbon from distorting sp3-bond, Crystal Growth and Design 16, 1360 (2016)
CrossRef ADS Google scholar
[159]
Y. Liu, X. Jiang, J. Fu, and J. Zhao, New metallic carbon: Three dimensionally carbon allotropes comprising ultrathin diamond nanostripes, Carbon 126, 601 (2018)
CrossRef ADS Google scholar
[160]
X. L. Sheng, Q. B. Yan, F. Ye, Q. R. Zheng, and G. Su, T-carbon: A novel carbon allotrope, Phys. Rev. Lett. 106(15), 155703 (2011)
CrossRef ADS Google scholar
[161]
X. Wu, X. Shi, M. Yao, S. Liu, X. Yang, L. Zhu, T. Cui, and B. Liu, Superhard three-dimensional carbon with metallic conductivity, Carbon 123, 311 (2017)
CrossRef ADS Google scholar
[162]
Q. Wei, Q. Zhang, H. Yan, and M. Zhang, A new superhard carbon allotrope: Tetragonal C64, J. Mater. Sci. 52(5), 2385 (2017)
CrossRef ADS Google scholar
[163]
J. Q. Wang, C. X. Zhao, C. Y. Niu, Q. Sun, and Y. Jia, C20 T-carbon: A novel superhard sp3 carbon allotrope with large cavities, J. Phys.: Condens. Matter 28(47), 475402 (2016)
CrossRef ADS Google scholar
[164]
D. Pantea, S. Brochu, S. Thiboutot, G. Ampleman, and G. Scholz, A morphological investigation of soot produced by the detonation of munitions, Chemosphere 65(5), 821 (2006)
CrossRef ADS Google scholar
[165]
F. Mouhat and F. X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B 90(22), 224104 (2014)
CrossRef ADS Google scholar
[166]
P. Chen, F. Huang, and S. Yun, Characterization of the condensed carbon in detonation soot, Carbon 41(11), 2093 (2003)
CrossRef ADS Google scholar
[167]
X. Q. Chen, H. Niu, D. Li, and Y. Li, Modeling hardness of polycrystalline materials and bulk metallic glasses, Intermetallics 19(9), 1275 (2011)
CrossRef ADS Google scholar
[168]
F. Gao, J. He, E. Wu, S. Liu, D. Yu, D. Li, S. Zhang, and Y. Tian, Hardness of covalent crystals, Phys. Rev. Lett. 91(1), 015502 (2003)
CrossRef ADS Google scholar
[169]
L. C. Xu, X. J. Song, R. Z. Wang, Z. Yang, X. Y. Li, and H. Yan, Designing electronic anisotropy of threedimensional carbon allotropes for the all-carbon device, Appl. Phys. Lett. 107(2), 021905 (2015)
CrossRef ADS Google scholar
[170]
J. Zhang, R. Wang, X. Zhu, A. Pan, C. Han, X. Li, Z. Dan, C. Ma, W. Wang, and H. Su, Pseudo-topotactic conversion of carbon nanotubes to T-carbon nanowires under picosecond laser irradiation in methanol, Nat. Commun. 8(1), 683(2017)
CrossRef ADS Google scholar
[171]
X. Q. Chen, H. Niu, C. Franchini, D. Li, and Y. Li, Hardness of T-carbon: Density functional theory calculations, Phys. Rev. B 84(12), 121405 (2011)
CrossRef ADS Google scholar
[172]
S. Y. Yue, G. Qin, X. Zhang, X. Sheng, G. Su, and M. Hu, Thermal transport in novel carbon allotropes with sp2 or sp3 hybridization: An ab initiostudy, Phys. Rev. B 95(8), 085207 (2017)
CrossRef ADS Google scholar
[173]
Z. Wu, E. Zhao, H. Xiang, X. Hao, X. Liu, and J. Meng, Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles, Phys. Rev. B 76(5), 054115 (2007)
CrossRef ADS Google scholar
[174]
A. O. Lyakhov and A. R. Oganov, Evolutionary search for superhard materials: Methodology and applications to forms of carbon and TiO2, Phys. Rev. B 84(9), 092130 (2011)
CrossRef ADS Google scholar
[175]
S. F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. 45(367), 823 (1954)
CrossRef ADS Google scholar
[176]
Y. Li, L. Xu, H. Liu, and Y. Li, Graphdiyne and graphyne: From theoretical predictions to practical construction, Chem. Soc. Rev. 43(8), 2572 (2014)
CrossRef ADS Google scholar
[177]
J. Kang, J. Li, F. Wu, S. S. Li, and J. B. Xia, Elastic, electronic, and optical properties of two-dimensional graphyne sheet,J. Phys. Chem. C 115(42), 20466 (2011)
CrossRef ADS Google scholar
[178]
R. C. Andrew, R. E. Mapasha, A. M. Ukpong, and N. Chetty, Mechanical properties of graphene and boronitrene, Phys. Rev. B 85(12), 125428 (2012)
CrossRef ADS Google scholar
[179]
J. Zhou, K. Lv, Q. Wang, X. Chen, Q. Sun, and P. Jena, Electronic structures and bonding of graphyne sheet and its BN analog, J. Chem. Phys. 134(17), 174701 (2011)
CrossRef ADS Google scholar
[180]
H. Bu, M. Zhao, H. Zhang, X. Wang, Y. Xi, and Z. Wang, Isoelectronic doping of graphdiyne with boron and nitrogen: Stable configurations and band gap modification, J. Phys. Chem. A 116(15), 3934 (2012)
CrossRef ADS Google scholar
[181]
C. Feng, X. H. Luan, P. Zhang, J. Xiao, D. G. Yang, and H. B. Qin, in: Electronic Packaging Technology (ICEPT), 2017, 18th International Conference on (IEEE, 2017), pp 1138–1142
[182]
Z. Xu, X. Lv, J. Li, J. Chen, and Q. Liu, A promising anode material for sodium-ion battery with high capacity and high diffusion ability: Graphyne and graphdiyne, RSC Advances 6(30), 25594 (2016)
CrossRef ADS Google scholar
[183]
Y. Pan, C. Xie, M. Xiong, M. Ma, L. Liu, Z. Li, S. Zhang, G. Gao, Z. Zhao, Y. Tian, B. Xu, and J. He, A superhard sp3 microporous carbon with direct bandgap, Chem. Phys. Lett. 689, 68 (2017)
CrossRef ADS Google scholar
[184]
R. L. Austman, J. S. Milner, D. W. Holdsworth, and C. E. Dunning, The effect of the density–modulus relationship selected to apply material properties in a finite element model of long bone, J. Biomech. 41(15), 3171 (2008)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(7542 KB)

Accesses

Citations

Detail

Sections
Recommended

/