The art of designing carbon allotropes
Run-Sen Zhang, Jin-Wu Jiang
The art of designing carbon allotropes
Stimulated by the success of graphene and diamond, a variety of carbon allotropes have been discovered in recent years in either two-dimensional or three-dimensional configurations. Although these emerging carbon allotropes share some common features, they have certain different and novel mechanical or physical properties. In this review, we present a comparative survey of some of the major properties of fifteen newly discovered carbon allotropes. By comparing their structural topology, we propose a general route for designing most carbon allotropes from two mother structures, namely, graphene and diamond. Furthermore, we discuss several future prospects as well as current challenges in designing new carbon allotropes.
carbon allotropes / mechanical properties
[1] |
R. Hoffmann, A. A. Kabanov, A. A. Golov, and D. M. Proserpio, Homo Citans and carbon allotropes: For an ethics of citation, Angew. Chem. Int. Ed. 55(37), 10962 (2016)
CrossRef
ADS
Google scholar
|
[2] |
A. E. Cass, G. Davis, G. D. Francis, H. A. O. Hill, W. J. Aston, I. J. Higgins, E. V. Plotkin, L. D. Scott, and A. P. Turner, Ferrocene-mediated enzyme electrode for amperometric determination of glucose, Anal. Chem. 56(4), 667 (1984)
CrossRef
ADS
Google scholar
|
[3] |
D. Aurbach, B. Markovsky, I. Weissman, E. Levi, and Y. Ein-Eli, On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries, Electrochim. Acta 45(1–2), 67 (1999)
CrossRef
ADS
Google scholar
|
[4] |
J. F. Rusling and A. E. F. Nassar, Enhanced electron transfer for myoglobin in surfactant films on electrodes, J. Am. Chem. Soc. 115(25), 11891 (1993)
CrossRef
ADS
Google scholar
|
[5] |
D. Aurbach, B. Markovsky, A. Shechter, Y. Ein-Eli, and H. Cohen, A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures, J. Electrochem. Soc. 143(12), 3809 (1996)
CrossRef
ADS
Google scholar
|
[6] |
M. Lichinchi, C. Lenardi, J. Haupt, and R. Vitali, Simulation of Berkovich nanoindentation experiments on thin films using finite element method, Thin Solid Films 312(1–2), 240 (1998)
CrossRef
ADS
Google scholar
|
[7] |
R. Saha, Z. Xue, Y. Huang, and W. D. Nix, Indentation of a soft metal film on a hard substrate: Strain gradient hardening effects, J. Mech. Phys. Solids 49(9), 1997 (2001)
CrossRef
ADS
Google scholar
|
[8] |
J. Cao, Y. Wu, D. Lu, M. Fujimoto, and M. Nomura, Material removal behavior in ultrasonic-assisted scratching of SiC ceramics with a single diamond tool, Int. J. Mach. Tools Manuf. 79, 49 (2014)
CrossRef
ADS
Google scholar
|
[9] |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
CrossRef
ADS
Google scholar
|
[10] |
H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, C60: Buckminsterfullerene, Nature 318(6042), 162 (1985)
CrossRef
ADS
Google scholar
|
[11] |
F. Diederich and M. Kivala, All-carbon scaffolds by rational design, Adv. Mater. 22(7), 803 (2010)
CrossRef
ADS
Google scholar
|
[12] |
C. Hug and S. W. Cranford, Sparse fulleryne structures enhance potential hydrogen storage and mobility, J. Mater. Chem. A 5, 21223 (2017)
CrossRef
ADS
Google scholar
|
[13] |
J. Cremers, R. Haver, M. Rickhaus, J. Q. Gong, L. Favereau, M. D. Peeks, T. Claridge, L. M. Herz, and H. L. Anderson, Template-directed synthesis of a conjugated zinc porphyrin nanoball, J. Am. Chem. Soc. 140(16), 5352 (2018)
CrossRef
ADS
Google scholar
|
[14] |
E. Estrada and Y. Sim’on-Manso, Escherynes: Novel carbon allotropes with belt shapes, Chem. Phys. Lett. 548, 80 (2012)
CrossRef
ADS
Google scholar
|
[15] |
A. Kochaev, A. Karenin, R. Meftakhutdinov, and R. Brazhe, 2D supracrystals as a promising materials for planar nanoacoustoelectronics, J. Phys.: Conf. Ser. 345, 012007 (2012)
CrossRef
ADS
Google scholar
|
[16] |
E. Belenkov and I. Shakhova, Structure of carbinoid nanotubes and carbinofullerenes, Phys. Solid State 53(11), 2385 (2011)
CrossRef
ADS
Google scholar
|
[17] |
A. N. Enyashin and A. L. Ivanovskii, Graphene allotropes,physica status solidi (b) 248, 1879 (2011)
|
[18] |
J. B. Goodenough, Evolution of strategies for modern rechargeable batteries, Acc. Chem. Res. 46(5), 1053 (2013)
CrossRef
ADS
Google scholar
|
[19] |
Z. Ogumi and H. Wang, Carbon Anode Materials, Springer, 2009
|
[20] |
D. H. Doughty, Materials issues in lithium ion rechargeable battery technology, Sampe Journal 32, 75 (1995)
|
[21] |
K. McElhaney, J. Vlassak, and W. Nix, Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments, J. Mater. Res. 13(05), 1300 (1998)
CrossRef
ADS
Google scholar
|
[22] |
A. Richter, R. Ries, R. Smith, M. Henkel, and B. Wolf, Nanoindentation of diamond, graphite and fullerene films, Diamond Related Materials 9(2), 170 (2000)
CrossRef
ADS
Google scholar
|
[23] |
W. Ni, Y. T. Cheng, and D. S. Grummon, Microscopic superelastic behavior of a nickel-titanium alloy under complex loading conditions, Appl. Phys. Lett. 82(17), 2811 (2003)
CrossRef
ADS
Google scholar
|
[24] |
D. J. Sprouster, S. Ruffell, J. E. Bradby, J. S. Williams, M. N. Lockrey, M. R. Phillips, R. C. Major, and O. L. Warren, Structural characterization of B-doped diamond nanoindentation tips, J. Mater. Res. 26(24), 3051 (2011)
CrossRef
ADS
Google scholar
|
[25] |
C. Soutis, Fibre reinforced composites in aircraft construction, Prog. Aerosp. Sci. 41(2), 143 (2005)
CrossRef
ADS
Google scholar
|
[26] |
U. Meier, Strengthening of structures using carbon fibre/ epoxy composites, Constr. Build. Mater. 9(6), 341 (1995)
CrossRef
ADS
Google scholar
|
[27] |
C. Soutis, Carbon fiber reinforced plastics in aircraft construction, Mater. Sci. Eng. A 412(1–2), 171 (2005)
CrossRef
ADS
Google scholar
|
[28] |
D. Chung, Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing, Carbon 50(9), 3342 (2012)
CrossRef
ADS
Google scholar
|
[29] |
N. Song, X. Gao, Z. Ma, X. Wang, Y. Wei, and C. Gao, A review of graphene-based separation membrane: Materials, characteristics, preparation and applications, Desalination 437, 59 (2018)
CrossRef
ADS
Google scholar
|
[30] |
A. D. Oyedele, C. M. Rouleau, D. B. Geohegan, and K. Xiao, The growth and assembly of organic molecules and inorganic 2D materials on graphene for van der Waals heterostructures, Carbon 131, 246 (2018)
CrossRef
ADS
Google scholar
|
[31] |
J. W. Jiang, Graphene versus MoS2: A short review, Front. Phys. 10(3), 287 (2015)
CrossRef
ADS
Google scholar
|
[32] |
F. Meng, H. Wang, F. Huang, Y. Guo, Z. Wang, D. Hui, and Z. Zhou, Graphene-based microwave absorbing composites: A review and prospective, Compos. Part B Eng. 137, 260 (2018)
CrossRef
ADS
Google scholar
|
[33] |
M. Ye, Z. Zhang, Y. Zhao, and L. Qu, Graphene platforms for smart energy generation and storage, Joule 2, 245 (2017)
CrossRef
ADS
Google scholar
|
[34] |
A. Darbandi, E. Gottardo, J. Huff, M. Stroscio, and T. Shokuhfar, A review of the cell to graphene-based nanomaterial interface, JOM 70(4), 566 (2018)
CrossRef
ADS
Google scholar
|
[35] |
M. J. Allen, V. C. Tung, and R. B. Kaner, Honeycomb carbon: A review of graphene, Chem. Rev. 110(1), 132 (2010)
CrossRef
ADS
Google scholar
|
[36] |
V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, Graphene based materials: Past, present and future, Prog. Mater. Sci. 56(8), 1178 (2011)
CrossRef
ADS
Google scholar
|
[37] |
A. A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater. 10(8), 569 (2011)
CrossRef
ADS
Google scholar
|
[38] |
F. Schwierz, Graphene transistors, Nat. Nanotechnol. 5(7), 487 (2010)
CrossRef
ADS
Google scholar
|
[39] |
F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, Graphene photonics and optoelectronics, Nature Photon. 4, 611 (2010)
CrossRef
ADS
Google scholar
|
[40] |
A. K. Geim, Graphene: Status and prospects, Science 324, 1530 (2009)
CrossRef
ADS
Google scholar
|
[41] |
Y. V. Pleskov, Electrochemistry of diamond: A review, Russ. J. Electrochem. 38(12), 1275 (2002)
CrossRef
ADS
Google scholar
|
[42] |
O. Auciello and A. V. Sumant, Status review of the science and technology of ultrananocrystalline diamond (UNCD™) films and application to multifunctional devices, Diamond Related Materials 19(7–9), 699 (2010)
|
[43] |
J. P. Goss, Theory of hydrogen in diamond, J. Phys.: Condens. Matter 15(17), R551 (2003)
CrossRef
ADS
Google scholar
|
[44] |
J. N. Coleman, U. Khan, W. J. Blau, and Y. K. Gun’ko, Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites, Carbon 44(9), 1624 (2006)
CrossRef
ADS
Google scholar
|
[45] |
Q. Cao and J. A. Rogers, Ultrathin films of single-walled carbon nanotubes for electronics and sensors: A review of fundamental and applied aspects, Adv. Mater. 21(1), 29 (2009)
CrossRef
ADS
Google scholar
|
[46] |
W. Bauhofer and J. Z. Kovacs, A review and analysis of electrical percolation in carbon nanotube polymer composites, Compos. Sci. Technol. 69(10), 1486 (2009)
CrossRef
ADS
Google scholar
|
[47] |
J. Wang, Carbon-nanotube based electrochemical biosensors: A review, Electroanalysis 17(1), 7 (2005)
CrossRef
ADS
Google scholar
|
[48] |
O. Breuer and U. Sundararaj, Big returns from small fibers: A review of polymer/carbon nanotube composites, Polym. Compos. 25(6), 630 (2004)
CrossRef
ADS
Google scholar
|
[49] |
J. M. Schulman and R. L. Disch, A theoretical study of large planar [n]phenylenes, J. Phys. Chem. A 111(39), 10010 (2007)
CrossRef
ADS
Google scholar
|
[50] |
S. Zhang, J. Zhou, Q. Wang, X. Chen, Y. Kawazoe, and P. Jena, Penta-graphene: A new carbon allotrope, Proc. Natl. Acad. Sci. U.S.A. 112(8), 2372 (2015)
CrossRef
ADS
Google scholar
|
[51] |
J. W. Jiang, J. Leng, J. Li, Z. Guo, T. Chang, X. Guo, and T. Zhang, Twin graphene: A novel two-dimensional semiconducting carbon allotrope, Carbon 118, 370 (2017)
CrossRef
ADS
Google scholar
|
[52] |
R. Baughman, H. Eckhardt, and M. Kertesz, Structure‐property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms, J. Chem. Phys. 87(11), 6687 (1987)
CrossRef
ADS
Google scholar
|
[53] |
Z. Wang, X. F. Zhou, X. Zhang, Q. Zhu, H. Dong, M. Zhao, and A. R. Oganov, Phagraphene: A low-energy graphene allotrope composed of 5–6–7 carbon rings with distorted Dirac cones, Nano Lett. 15(9), 6182 (2015)
CrossRef
ADS
Google scholar
|
[54] |
F. Schlütter, T. Nishiuchi, V. Enkelmann, and K. Müllen, Octafunctionalized biphenylenes: Molecular precursors for isomeric graphene nanostructures, Angew. Chem. Int. Ed. 53(6), 1538 (2014)
CrossRef
ADS
Google scholar
|
[55] |
C. X. Zhao, C. Y. Niu, Z. J. Qin, X. Y. Ren, J. T. Wang, J. H. Cho, and Y. Jia, H18 carbon: A new metallic phase with sp2-sp3 hybridized bonding network, Sci. Rep. 6(1), 21879 (2016)
CrossRef
ADS
Google scholar
|
[56] |
Q. Song, B. Wang, K. Deng, X. Feng, M. Wagner, J. D. Gale, K. Müllen, and L. Zhi, Graphenylene, a unique two-dimensional carbon network with nondelocalized cyclohexatriene units, J. Mater. Chem. C 1(1), 38 (2013)
CrossRef
ADS
Google scholar
|
[57] |
A. T. Koch, A. H. Khoshaman, H. D. Fan, G. A. Sawatzky, and A. Nojeh, Graphenylene Nanotubes, J. Phys. Chem. Lett. 6(19), 3982 (2015)
CrossRef
ADS
Google scholar
|
[58] |
L. Zhu, Y. Jin, Q. Xue, X. Li, H. Zheng, T. Wu, and C. Ling, Theoretical study of a tunable and strain-controlled nanoporous graphenylene membrane for multifunctional gas separation, J. Mater. Chem. A 4(39), 15015 (2016)
CrossRef
ADS
Google scholar
|
[59] |
W. Liu, M. Miao, and J. y. Liu, Band gap engineering of graphenylene by hydrogenation and halogenation: A density functional theory study,RSC Advances 5(87), 70766 (2015)
CrossRef
ADS
Google scholar
|
[60] |
G. Fabris, N. Marana, E. Longo, and J. Sambrano, Theoretical study of porous surfaces derived from graphene and boron nitride, J. Solid State Chem. 258, 247 (2018)
CrossRef
ADS
Google scholar
|
[61] |
Y. Qu, F. Li, and M. Zhao, Efficient 3He/4He separation in a nanoporous graphenylene membrane, Phys. Chem. Chem. Phys. 19(32), 21522 (2017)
CrossRef
ADS
Google scholar
|
[62] |
A. Balaban, C. C. Rentia, and E. Ciupitu, Estimation of relative stability of several planar and tridimensional lattices for elementary carbon, Rev. Roum. Chim. 13, 231 (1968)
|
[63] |
Q. S. Du, P. D. Tang, H. L. Huang, F. L. Du, K. Huang, N. Z. Xie, S. Y. Long, Y. M. Li, J. S. Qiu, and R. B. Huang, A new type of two-dimensional carbon crystal prepared from 1, 3, 5-trihydroxybenzene, Sci. Rep. 7(1), 40796 (2017)
CrossRef
ADS
Google scholar
|
[64] |
R. Totani, C. Grazioli, T. Zhang, I. Bidermane, J. Lüder, M. de Simone, M. Coreno, B. Brena, L. Lozzi, and C. Puglia, Electronic structure investigation of biphenylene films, J. Chem. Phys. 146(5), 054705 (2017)
CrossRef
ADS
Google scholar
|
[65] |
M. Bieri, M. Treier, J. Cai, K. Aït-Mansour, P. Ruffieux, O. Gröning, P. Gröning, M. Kastler, R. Rieger, X. Feng, K. Müllen, and R. Fasel, Porous graphenes: Twodimensional polymer synthesis with atomic precision, Chem. Commun. 45(45), 6919 (2009)
CrossRef
ADS
Google scholar
|
[66] |
Y. X. Yu, Graphenylene: A promising anode material for lithium-ion batteries with high mobility and storage, J. Mater. Chem. A 1(43), 13559 (2013)
CrossRef
ADS
Google scholar
|
[67] |
S. Rouhi and A. Ghasemi, Investigation of the elastic properties of graphenylene using molecular dynamics simulations, Mater. Res. 20(1), 1 (2016)
CrossRef
ADS
Google scholar
|
[68] |
H. Lu and S. D. Li, Two-dimensional carbon allotropes from graphene to graphyne, J. Mater. Chem. C 1(23), 3677 (2013)
CrossRef
ADS
Google scholar
|
[69] |
G. Brunetto, P. Autreto, L. Machado, B. Santos, R. P. Dos Santos, and D. S. Galvao, Nonzero gap twodimensional carbon allotrope from porous graphene, J. Phys. Chem. C 116(23), 12810 (2012)
CrossRef
ADS
Google scholar
|
[70] |
M. De La Pierre, P. Karamanis, J. Baima, R. Orlando, C. Pouchan, and R. Dovesi, Ab Initioperiodic simulation of the spectroscopic and optical properties of novel porous graphene phases, J. Phys. Chem. C 117(5), 2222 (2013)
CrossRef
ADS
Google scholar
|
[71] |
G. S. Fabris, C. E. Junkermeier, and R. Paupitz, Porous graphene and graphenylene nanotubes: Electronic structure and strain effects, Comput. Mater. Sci. 140, 344 (2017)
CrossRef
ADS
Google scholar
|
[72] |
M. Hankel and D. J. Searles, Lithium storage on carbon nitride, graphenylene and inorganic graphenylene, Phys. Chem. Chem. Phys. 18(21), 14205 (2016)
CrossRef
ADS
Google scholar
|
[73] |
O. Rahaman, B. Mortazavi, A. Dianat, G. Cuniberti, and T. Rabczuk, Metamorphosis in carbon network: From penta-graphene to biphenylene under uniaxial tension, FlatChem 1, 65 (2017)
CrossRef
ADS
Google scholar
|
[74] |
M. Q. Le, Mechanical properties of penta-graphene, hydrogenated penta-graphene, and penta-CN2 sheets, Comput. Mater. Sci. 136, 181 (2017)
CrossRef
ADS
Google scholar
|
[75] |
C. P. Ewels, X. Rocquefelte, H. W. Kroto, M. J. Rayson, P. R. Briddon, and M. I. Heggie, Predicting experimentally stable allotropes: Instability of penta-graphene, Proc. Natl. Acad. Sci. USA 112(51), 15609 (2015)
CrossRef
ADS
Google scholar
|
[76] |
Z. Wang, F. Dong, B. Shen, R. Zhang, Y. Zheng, L. Chen, S. Wang, C. Wang, K. Ho, Y.-J. Fan, et al., Electronic and optical properties of novel carbon allotropes, Carbon 101, 77 (2016)
CrossRef
ADS
Google scholar
|
[77] |
H. Einollahzadeh, R. Dariani, and S. Fazeli, Computing the band structure and energy gap of penta-graphene by using DFT and G0W0 approximations, Solid State Commun. 229, 1 (2016)
CrossRef
ADS
Google scholar
|
[78] |
T. Stauber, J. Beltr’an, and J. Schliemann, Tight-binding approach to penta-graphene, Sci. Rep. 6(1), 22672 (2016)
CrossRef
ADS
Google scholar
|
[79] |
X. Li, S. Zhang, F. Q. Wang, Y. Guo, J. Liu, and Q. Wang, Tuning the electronic and mechanical properties of penta-graphene via hydrogenation and fluorination, Phys. Chem. Chem. Phys. 18(21), 14191 (2016)
CrossRef
ADS
Google scholar
|
[80] |
S. W. Cranford, When is 6 less than 5? Penta- to hexagraphene transition, Carbon 96, 421 (2016)
CrossRef
ADS
Google scholar
|
[81] |
H. Sun, S. Mukherjee, and C. V. Singh, Mechanical properties of monolayer penta-graphene and phagraphene: a first-principles study, Phys. Chem. Chem. Phys. 18(38), 26736 (2016)
CrossRef
ADS
Google scholar
|
[82] |
Y. Zhang, Q. Pei, Z. Sha, Y. Zhang, and H. Gao, Remarkable enhancement in failure stress and strain of penta-graphene via chemical functionalization, Nano Res. 10(11), 3865 (2017)
CrossRef
ADS
Google scholar
|
[83] |
S. Ebrahimi, Effect of hydrogen coverage on the buckling of penta-graphene by molecular dynamics simulation, Mol. Simul. 42(17), 1485 (2016)
CrossRef
ADS
Google scholar
|
[84] |
Z. G. Yu and Y. W. Zhang, A comparative density functional study on electrical properties of layered pentagraphene, J. Appl. Phys. 118(16), 165706 (2015)
CrossRef
ADS
Google scholar
|
[85] |
G. Berdiyorov, G. Dixit, and M. Madjet, Band gap engineering in penta-graphene by substitutional doping: first-principles calculations, J. Phys.: Condens. Matter 28(47), 475001 (2016)
CrossRef
ADS
Google scholar
|
[86] |
J. Quijano-Briones, H. Fernández-Escamilla, and A. Tlahuice-Flores, Doped penta-graphene and hydrogenation of its related structures: a structural and electronic DFT-D study, Phys. Chem. Chem. Phys. 18(23), 15505 (2016)
CrossRef
ADS
Google scholar
|
[87] |
G. R. Berdiyorov and M. E. A. Madjet, First-principles study of electronic transport and optical properties of penta-graphene, penta-SiC2 and penta-CN2, RSC Advances 6(56), 50867 (2016)
CrossRef
ADS
Google scholar
|
[88] |
J. I. G. Enriquez and A. R. C. Villagracia, Hydrogen adsorption on pristine, defected, and 3d-block transition metal-doped penta-graphene, Int. J. Hydrogen Energy 41(28), 12157 (2016)
CrossRef
ADS
Google scholar
|
[89] |
H. Einollahzadeh, S. M. Fazeli, and R. S. Dariani, Studying the electronic and phononic structure of pentagraphane, Sci. Technol. Adv. Mater. 17(1), 610 (2016)
CrossRef
ADS
Google scholar
|
[90] |
B. Rajbanshi, S. Sarkar, B. Mandal, and P. Sarkar, Energetic and electronic structure of penta-graphene nanoribbons, Carbon 100, 118 (2016)
CrossRef
ADS
Google scholar
|
[91] |
P. Yuan, Z. Zhang, Z. Fan, and M. Qiu, Electronic structure and magnetic properties of penta-graphene nanoribbons, Phys. Chem. Chem. Phys. 19(14), 9528 (2017)
CrossRef
ADS
Google scholar
|
[92] |
W. Xu, G. Zhang, and B. Li, Thermal conductivity of penta-graphene from molecular dynamics study, J. Chem. Phys. 143(15), 154703 (2015)
CrossRef
ADS
Google scholar
|
[93] |
H. Liu, G. Qin, Y. Lin, and M. Hu, Disparate strain dependent thermal conductivity of two-dimensional pentastructures, Nano Lett. 16(6), 3831 (2016)
CrossRef
ADS
Google scholar
|
[94] |
F. Q. Wang, J. Yu, Q. Wang, Y. Kawazoe, and P. Jena, Lattice thermal conductivity of penta-graphene, Carbon 105, 424 (2016)
CrossRef
ADS
Google scholar
|
[95] |
X. Wu, V. Varshney, J. Lee, T. Zhang, J. L. Wohlwend, A. K. Roy, and T. Luo, Hydrogenation of penta-graphene leads to unexpected large improvement in thermal conductivity, Nano Lett. 16(6), 3925 (2016)
CrossRef
ADS
Google scholar
|
[96] |
F. Q. Wang, J. Liu, X. Li, Q. Wang, and Y. Kawazoe, Weak interlayer dependence of lattice thermal conductivity on stacking thickness of penta-graphene, Appl. Phys. Lett. 111(19), 192102 (2017)
CrossRef
ADS
Google scholar
|
[97] |
Y. Y. Zhang, Q. X. Pei, Y. Cheng, Y. W. Zhang, and X. Zhang, Thermal conductivity of penta-graphene: The role of chemical functionalization, Comput. Mater. Sci. 137, 195 (2017)
CrossRef
ADS
Google scholar
|
[98] |
R. Krishnan, W. S. Su, and H. T. Chen, A new carbon allotrope: Penta-graphene as a metal-free catalyst for CO oxidation, Carbon 114, 465 (2017)
CrossRef
ADS
Google scholar
|
[99] |
B. Xiao, Y.-C. Li, X.-F. Yu, and J.-B. Cheng, Pentagraphene: A promising anode material as the Li/Na-ion battery with both extremely high theoretical capacity and fast charge/discharge rate, ACS Appl. Mater. Interfaces 8, 35342 (2016)
CrossRef
ADS
Google scholar
|
[100] |
Q. Lu, M. Arroyo, and R. Huang, Elastic bending modulus of monolayer graphene, J. Phys. D Appl. Phys. 42(10), 102002 (2009)
CrossRef
ADS
Google scholar
|
[101] |
M. M. Haley, S. C. Brand, and J. J. Pak, Carbon networks based on dehydrobenzoannulenes: Synthesis of graphdiyne substructures, Angew. Chem. Int. Ed. Engl. 36(8), 836 (1997)
CrossRef
ADS
Google scholar
|
[102] |
G. Li, Y. Li, H. Liu, Y. Guo, Y. Li, and D. Zhu, Architecture of graphdiyne nanoscale films, Chem. Commun. (Camb.) 46(19), 3256 (2010)
CrossRef
ADS
Google scholar
|
[103] |
Y. Q. Zhang, N. Kepčija, M. Kleinschrodt, K. Diller, S. Fischer, A. C. Papageorgiou, F. Allegretti, J. Björk, S. Klyatskaya, F. Klappenberger, M. Ruben, and J. V. Barth, Homo-coupling of terminal alkynes on a noble metal surface, Nat. Commun. 3(1), 1286 (2012)
CrossRef
ADS
Google scholar
|
[104] |
A. Ivanovskii, Graphynes and graphdyines, Prog. Solid State Chem. 41(1–2), 1 (2013)
|
[105] |
Q. Peng, J. Crean, L. Han, S. Liu, X. Wen, S. De, and A. Dearden, New materials graphyne, graphdiyne, graphone, and graphane: Review of properties, synthesis, and application in nanotechnology, Nanotechnol. Sci. Appl. 7, 1 (2014)
CrossRef
ADS
Google scholar
|
[106] |
Y. Li, L. Xu, H. Liu, and Y. Li, Graphdiyne and graphyne: From theoretical predictions to practical construction, Chem. Soc. Rev. 43(8), 2572 (2014)
CrossRef
ADS
Google scholar
|
[107] |
Z. Chen, C. Molina-Jirón, S. Klyatskaya, F. Klappenberger, and M. Ruben, 1D and 2D graphdiynes: Recent advances on the synthesis at interfaces and potential nanotechnological applications, Ann. Phys. 529(11), 1700056 (2017)
CrossRef
ADS
Google scholar
|
[108] |
F. Chang, L. Huang, Y. Li, C. Guo, and Q. Diao, A short review of synthesis of graphdiyne and its potential applications, Int. J. Electrochem. Sci. 12, 10348 (2017)
CrossRef
ADS
Google scholar
|
[109] |
X. Zhang, M. Zhu, P. Chen, Y. Li, H. Liu, Y. Li, and M. Liu, Pristine graphdiyne-hybridized photocatalysts using graphene oxide as a dual-functional coupling reagent, Phys. Chem. Chem. Phys. 17(2), 1217 (2015)
CrossRef
ADS
Google scholar
|
[110] |
H. Qi, P. Yu, Y. Wang, G. Han, H. Liu, Y. Yi, Y. Li, and L. Mao, Graphdiyne oxides as excellent substrate for electroless deposition of Pd clusters with high catalytic activity, J. Am. Chem. Soc. 137(16), 5260 (2015)
CrossRef
ADS
Google scholar
|
[111] |
L. Sun, P. Jiang, H. Liu, D. Fan, J. Liang, J. Wei, L. Cheng, J. Zhang, and J. Shi, Graphdiyne: A twodimensional thermoelectric material with high figure of merit, Carbon 90, 255 (2015)
CrossRef
ADS
Google scholar
|
[112] |
N. Narita, S. Nagai, S. Suzuki, and K. Nakao, Optimized geometries and electronic structures of graphyne and its family, Phys. Rev. B 58(16), 11009 (1998)
CrossRef
ADS
Google scholar
|
[113] |
H. Bai, Y. Zhu, W. Qiao, and Y. Huang, Structures, stabilities and electronic properties of graphdiyne nanoribbons, RSC Advances 1(5), 768 (2011)
CrossRef
ADS
Google scholar
|
[114] |
S. W. Cranford and M. J. Buehler, Mechanical properties of graphyne, Carbon 49(13), 4111 (2011)
CrossRef
ADS
Google scholar
|
[115] |
Y. Yang and X. Xu, Mechanical properties of graphyne and its family – A molecular dynamics investigation, Comput. Mater. Sci. 61, 83 (2012)
CrossRef
ADS
Google scholar
|
[116] |
Q. Peng, W. Ji, and S. De, Mechanical properties of graphyne monolayers: a first-principles study, Phys. Chem. Chem. Phys. 14(38), 13385 (2012)
CrossRef
ADS
Google scholar
|
[117] |
S. Ajori, R. Ansari, and M. Mirnezhad, Mechanical properties of defective g-graphyne using molecular dynamics simulations, Mater. Sci. Eng. A 561, 34 (2013)
CrossRef
ADS
Google scholar
|
[118] |
S. Ma, M. Zhang, L. Sun, and K. Zhang, Hightemperature behavior of monolayer graphyne and graphdiyne, Carbon 99, 547 (2016)
CrossRef
ADS
Google scholar
|
[119] |
Q. Yue, S. Chang, J. Kang, S. Qin, and J. Li, Mechanical and electronic properties of graphyne and its family under elastic strain: Theoretical predictions, J. Phys. Chem. C 117(28), 14804 (2013)
CrossRef
ADS
Google scholar
|
[120] |
S. W. Cranford, D. B. Brommer, and M. J. Buehler, Extended graphynes: simple scaling laws for stiffness, strength and fracture, Nanoscale 4(24), 7797 (2012)
CrossRef
ADS
Google scholar
|
[121] |
Y. Y. Zhang, Q. X. Pei, and C. M. Wang, Mechanical properties of graphynes under tension: A molecular dynamics study, Appl. Phys. Lett. 101, 666 (2012)
CrossRef
ADS
Google scholar
|
[122] |
Y. Pei, Mechanical properties of graphdiyne sheet, Physica B 407(22), 4436 (2012)
CrossRef
ADS
Google scholar
|
[123] |
M. M. Haley, Synthesis and properties of annulenic subunits of graphyne and graphdiyne nanoarchitectures, Pure Appl. Chem. 80(3), 519 (2008)
CrossRef
ADS
Google scholar
|
[124] |
G. Luo, X. Qian, H. Liu, R. Qin, J. Zhou, L. Li, Z. Gao, E. Wang, W. N. Mei, J. Lu, Y. Li, and S. Nagase, Quasiparticle energies and excitonic effects of the two-dimensional carbon allotrope graphdiyne: Theory and experiment, Phys. Rev. B 84(7), 075439 (2011)
CrossRef
ADS
Google scholar
|
[125] |
Y. Jiao, A. Du, M. Hankel, Z. Zhu, V. Rudolph, and S. C. Smith, Graphdiyne: A versatile nanomaterial for electronics and hydrogen purification, Chem. Commun. 47(43), 11843 (2011)
CrossRef
ADS
Google scholar
|
[126] |
G. M. Psofogiannakis and G. E. Froudakis, Computational prediction of new hydrocarbon materials: The hydrogenated forms of graphdiyne, J. Phys. Chem. C 116(36), 19211 (2012)
CrossRef
ADS
Google scholar
|
[127] |
M. Long, L. Tang, D. Wang, Y. Li, and Z. Shuai, Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: Theoretical predictions, ACS Nano 5(4), 2593 (2011)
CrossRef
ADS
Google scholar
|
[128] |
S. Jalili, F. Houshmand, and J. Schofield, Study of carrier mobility of tubular and planar graphdiyne, Appl. Phys. A 119(2), 571 (2015)
CrossRef
ADS
Google scholar
|
[129] |
J. Xi, M. Long, L. Tang, D. Wang, and Z. Shuai, Firstprinciples prediction of charge mobility in carbon and organic nanomaterials, Nanoscale 4(15), 4348 (2012)
CrossRef
ADS
Google scholar
|
[130] |
H. J. Cui, X. L. Sheng, Q. B. Yan, Q. R. Zheng, and G. Su, Strain-induced Dirac cone-like electronic structures and semiconductor–semimetal transition in graphdiyne, Phys. Chem. Chem. Phys. 15(21), 8179 (2013)
CrossRef
ADS
Google scholar
|
[131] |
K. Krishnamoorthy, S. Thangavel, J. C. Veetil, N. Raju, G. Venugopal, and S. J. Kim, Graphdiyne nanostructures as a new electrode material for electrochemical supercapacitors, International Journal of Hydrogen Energy 41, 1672 (2016)
CrossRef
ADS
Google scholar
|
[132] |
K. Srinivasu and S. K. Ghosh, Graphyne and graphdiyne: Promising materials for nanoelectronics and energy storage applications, J. Phys. Chem. C 116(9), 5951 (2012)
CrossRef
ADS
Google scholar
|
[133] |
C. Sun and D. J. Searles, Lithium storage on graphdiyne predicted by DFT calculations, J. Phys. Chem. C 116(50), 26222 (2012)
CrossRef
ADS
Google scholar
|
[134] |
H. Zhang, Y. Xia, H. Bu, X. Wang, M. Zhang, Y. Luo, and M. Zhao, Graphdiyne: A promising anode material for lithium ion batteries with high capacity and rate capability, J. Appl. Phys. 113(4), 044309 (2013)
CrossRef
ADS
Google scholar
|
[135] |
B. Jang, J. Koo, M. Park, H. Lee, J. Nam, Y. Kwon, and H. Lee, Graphdiyne as a high-capacity lithium ion battery anode material, Appl. Phys. Lett. 103(26), 263904 (2013)
CrossRef
ADS
Google scholar
|
[136] |
S. Zhang, H. Du, J. He, C. Huang, H. Liu, G. Cui, and Y. Li, Nitrogen-doped graphdiyne applied for lithium-ion storage, ACS Appl. Mater. Interfaces 8, 8467 (2016)
CrossRef
ADS
Google scholar
|
[137] |
H. Du, H. Yang, C. Huang, J. He, H. Liu, and Y. Li, Graphdiyne applied for lithium-ion capacitors displaying high power and energy densities, Nano Energy 22, 615 (2016)
CrossRef
ADS
Google scholar
|
[138] |
S. Zhang, H. Liu, C. Huang, G. Cui, and Y. Li, Bulk graphdiyne powder applied for highly efficient lithium storage, Chem. Commun. 51(10), 1834 (2015)
CrossRef
ADS
Google scholar
|
[139] |
C. Huang, S. Zhang, H. Liu, Y. Li, G. Cui, and Y. Li, Graphdiyne for high capacity and long-life lithium storage, Nano Energy 11, 481 (2015)
CrossRef
ADS
Google scholar
|
[140] |
H. Yu, A. Du, Y. Song, and D. J. Searles, Graphyne and graphdiyne: Versatile catalysts for dehydrogenation of light metal complex hydrides, J. Phys. Chem. C 117(42), 21643 (2013)
CrossRef
ADS
Google scholar
|
[141] |
R. Liu, H. Liu, Y. Li, Y. Yi, X. Shang, S. Zhang, X. Yu, S. Zhang, H. Cao, and G. Zhang, Nitrogen-doped graphdiyne as a metal-free catalyst for high-performance oxygen reduction reactions, Nanoscale 6(19), 11336 (2014)
CrossRef
ADS
Google scholar
|
[142] |
J. Li, X. Gao, B. Liu, Q. Feng, X. B. Li, M. Y. Huang, Z. Liu, J. Zhang, C. H. Tung, and L. Z. Wu, Graphdiyne: A metal-free material as hole transfer layer to fabricate quantum dot-sensitized photocathodes for hydrogen production, J. Am. Chem. Soc. 138(12), 3954 (2016)
CrossRef
ADS
Google scholar
|
[143] |
S. W. Cranford and M. J. Buehler, Selective hydrogen purification through graphdiyne under ambient temperature and pressure, Nanoscale 4(15), 4587 (2012)
CrossRef
ADS
Google scholar
|
[144] |
L. F. C. Pereira, B. Mortazavi, M. Makaremi, and T. Rabczuk, Anisotropic thermal conductivity and mechanical properties of phagraphene: A molecular dynamics study, RSC Advances 6(63), 57773 (2016)
CrossRef
ADS
Google scholar
|
[145] |
D. Wu, S. Wang, J. Yuan, B. Yang, and H. Chen, Modulation of the electronic and mechanical properties of phagraphene via hydrogenation and fluorination, Phys. Chem. Chem. Phys. 19(19), 11771 (2017)
CrossRef
ADS
Google scholar
|
[146] |
A. Lopez-Bezanilla, Strain-mediated modification of phagraphene Dirac cones, J. Phys. Chem. C 120(30), 17101 (2016)
CrossRef
ADS
Google scholar
|
[147] |
A. Luo, R. Hu, Z. Fan, H. Zhang, J. Yuan, C. Yang, and Z. Zhang, Electronic structure, carrier mobility and device properties for mixed-edge phagraphene nanoribbon by hetero-atom doping, Org. Electron. 51, 277 (2017)
CrossRef
ADS
Google scholar
|
[148] |
Y. Liu, Z. Chen, L. Tong, J. Zhang, and D. Sun, Effect of edge-hydrogen passivation and nanometer size on the electronic properties of phagraphene ribbons, Comput. Mater. Sci. 117, 279 (2016)
CrossRef
ADS
Google scholar
|
[149] |
P. Yuan, Z. Fan, and Z. Zhang, Magneto-electronic properties and carrier mobility in phagraphene nanoribbons: A theoretical prediction, Carbon 124, 228 (2017)
CrossRef
ADS
Google scholar
|
[150] |
D. Ferguson, D. J. Searles, and M. Hankel, Biphenylene and phagraphene as lithium ion battery anode materials, ACS Appl. Mater. Interfaces 9, 20577 (2017)
CrossRef
ADS
Google scholar
|
[151] |
W. C. Lothrop, Biphenylene, J. Am. Chem. Soc. 63(5), 1187 (1941)
CrossRef
ADS
Google scholar
|
[152] |
N. Yedla, P. Gupta, T. Y. Ng, and K. Geethalakshmi, Effect of loading direction and defects on the strength and fracture behavior of biphenylene based graphene monolayer, Mater. Chem. Phys. 202, 127 (2017)
CrossRef
ADS
Google scholar
|
[153] |
M. A. Hudspeth, B. W. Whitman, V. Barone, and J. E. Peralta, Electronic properties of the biphenylene sheet and its one-dimensional derivatives, ACS Nano 4(8), 4565 (2010)
CrossRef
ADS
Google scholar
|
[154] |
P. A. Denis, Stability and electronic properties of biphenylene based functionalized nanoribbons and sheets, J. Phys. Chem. C 118(43), 24976 (2014)
CrossRef
ADS
Google scholar
|
[155] |
S. Wang, Optical response and excitonic effects in graphene nanoribbons derived from biphenylene, Mater. Lett. 167, 258 (2016)
CrossRef
ADS
Google scholar
|
[156] |
P. A. Denis and F. Iribarne, Hydrogen storage in doped biphenylene based sheets, Comput. Theor. Chem. 1062, 30 (2015)
CrossRef
ADS
Google scholar
|
[157] |
J. Liu, T. Zhao, S. Zhang, and Q. Wang, A new metallic carbon allotrope with high stability and potential for lithium ion battery anode material, Nano Energy 38, 263 (2017)
CrossRef
ADS
Google scholar
|
[158] |
Y. Cheng, R. Melnik, Y. Kawazoe, and B. Wen, Three dimensional metallic carbon from distorting sp3-bond, Crystal Growth and Design 16, 1360 (2016)
CrossRef
ADS
Google scholar
|
[159] |
Y. Liu, X. Jiang, J. Fu, and J. Zhao, New metallic carbon: Three dimensionally carbon allotropes comprising ultrathin diamond nanostripes, Carbon 126, 601 (2018)
CrossRef
ADS
Google scholar
|
[160] |
X. L. Sheng, Q. B. Yan, F. Ye, Q. R. Zheng, and G. Su, T-carbon: A novel carbon allotrope, Phys. Rev. Lett. 106(15), 155703 (2011)
CrossRef
ADS
Google scholar
|
[161] |
X. Wu, X. Shi, M. Yao, S. Liu, X. Yang, L. Zhu, T. Cui, and B. Liu, Superhard three-dimensional carbon with metallic conductivity, Carbon 123, 311 (2017)
CrossRef
ADS
Google scholar
|
[162] |
Q. Wei, Q. Zhang, H. Yan, and M. Zhang, A new superhard carbon allotrope: Tetragonal C64, J. Mater. Sci. 52(5), 2385 (2017)
CrossRef
ADS
Google scholar
|
[163] |
J. Q. Wang, C. X. Zhao, C. Y. Niu, Q. Sun, and Y. Jia, C20 T-carbon: A novel superhard sp3 carbon allotrope with large cavities, J. Phys.: Condens. Matter 28(47), 475402 (2016)
CrossRef
ADS
Google scholar
|
[164] |
D. Pantea, S. Brochu, S. Thiboutot, G. Ampleman, and G. Scholz, A morphological investigation of soot produced by the detonation of munitions, Chemosphere 65(5), 821 (2006)
CrossRef
ADS
Google scholar
|
[165] |
F. Mouhat and F. X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B 90(22), 224104 (2014)
CrossRef
ADS
Google scholar
|
[166] |
P. Chen, F. Huang, and S. Yun, Characterization of the condensed carbon in detonation soot, Carbon 41(11), 2093 (2003)
CrossRef
ADS
Google scholar
|
[167] |
X. Q. Chen, H. Niu, D. Li, and Y. Li, Modeling hardness of polycrystalline materials and bulk metallic glasses, Intermetallics 19(9), 1275 (2011)
CrossRef
ADS
Google scholar
|
[168] |
F. Gao, J. He, E. Wu, S. Liu, D. Yu, D. Li, S. Zhang, and Y. Tian, Hardness of covalent crystals, Phys. Rev. Lett. 91(1), 015502 (2003)
CrossRef
ADS
Google scholar
|
[169] |
L. C. Xu, X. J. Song, R. Z. Wang, Z. Yang, X. Y. Li, and H. Yan, Designing electronic anisotropy of threedimensional carbon allotropes for the all-carbon device, Appl. Phys. Lett. 107(2), 021905 (2015)
CrossRef
ADS
Google scholar
|
[170] |
J. Zhang, R. Wang, X. Zhu, A. Pan, C. Han, X. Li, Z. Dan, C. Ma, W. Wang, and H. Su, Pseudo-topotactic conversion of carbon nanotubes to T-carbon nanowires under picosecond laser irradiation in methanol, Nat. Commun. 8(1), 683(2017)
CrossRef
ADS
Google scholar
|
[171] |
X. Q. Chen, H. Niu, C. Franchini, D. Li, and Y. Li, Hardness of T-carbon: Density functional theory calculations, Phys. Rev. B 84(12), 121405 (2011)
CrossRef
ADS
Google scholar
|
[172] |
S. Y. Yue, G. Qin, X. Zhang, X. Sheng, G. Su, and M. Hu, Thermal transport in novel carbon allotropes with sp2 or sp3 hybridization: An ab initiostudy, Phys. Rev. B 95(8), 085207 (2017)
CrossRef
ADS
Google scholar
|
[173] |
Z. Wu, E. Zhao, H. Xiang, X. Hao, X. Liu, and J. Meng, Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles, Phys. Rev. B 76(5), 054115 (2007)
CrossRef
ADS
Google scholar
|
[174] |
A. O. Lyakhov and A. R. Oganov, Evolutionary search for superhard materials: Methodology and applications to forms of carbon and TiO2, Phys. Rev. B 84(9), 092130 (2011)
CrossRef
ADS
Google scholar
|
[175] |
S. F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. 45(367), 823 (1954)
CrossRef
ADS
Google scholar
|
[176] |
Y. Li, L. Xu, H. Liu, and Y. Li, Graphdiyne and graphyne: From theoretical predictions to practical construction, Chem. Soc. Rev. 43(8), 2572 (2014)
CrossRef
ADS
Google scholar
|
[177] |
J. Kang, J. Li, F. Wu, S. S. Li, and J. B. Xia, Elastic, electronic, and optical properties of two-dimensional graphyne sheet,J. Phys. Chem. C 115(42), 20466 (2011)
CrossRef
ADS
Google scholar
|
[178] |
R. C. Andrew, R. E. Mapasha, A. M. Ukpong, and N. Chetty, Mechanical properties of graphene and boronitrene, Phys. Rev. B 85(12), 125428 (2012)
CrossRef
ADS
Google scholar
|
[179] |
J. Zhou, K. Lv, Q. Wang, X. Chen, Q. Sun, and P. Jena, Electronic structures and bonding of graphyne sheet and its BN analog, J. Chem. Phys. 134(17), 174701 (2011)
CrossRef
ADS
Google scholar
|
[180] |
H. Bu, M. Zhao, H. Zhang, X. Wang, Y. Xi, and Z. Wang, Isoelectronic doping of graphdiyne with boron and nitrogen: Stable configurations and band gap modification, J. Phys. Chem. A 116(15), 3934 (2012)
CrossRef
ADS
Google scholar
|
[181] |
C. Feng, X. H. Luan, P. Zhang, J. Xiao, D. G. Yang, and H. B. Qin, in: Electronic Packaging Technology (ICEPT), 2017, 18th International Conference on (IEEE, 2017), pp 1138–1142
|
[182] |
Z. Xu, X. Lv, J. Li, J. Chen, and Q. Liu, A promising anode material for sodium-ion battery with high capacity and high diffusion ability: Graphyne and graphdiyne, RSC Advances 6(30), 25594 (2016)
CrossRef
ADS
Google scholar
|
[183] |
Y. Pan, C. Xie, M. Xiong, M. Ma, L. Liu, Z. Li, S. Zhang, G. Gao, Z. Zhao, Y. Tian, B. Xu, and J. He, A superhard sp3 microporous carbon with direct bandgap, Chem. Phys. Lett. 689, 68 (2017)
CrossRef
ADS
Google scholar
|
[184] |
R. L. Austman, J. S. Milner, D. W. Holdsworth, and C. E. Dunning, The effect of the density–modulus relationship selected to apply material properties in a finite element model of long bone, J. Biomech. 41(15), 3171 (2008)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |