Symmetries of the interacting boson model

P. Van Isacker

PDF(8757 KB)
PDF(8757 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (6) : 132107. DOI: 10.1007/s11467-018-0833-8
REVIEW ARTICLE
REVIEW ARTICLE

Symmetries of the interacting boson model

Author information +
History +

Abstract

This contribution reviews the symmetry properties of the interacting boson model of Arima and Iachello. While the concept of a dynamical symmetry is by now a familiar one, this is not necessarily so for the extended notions of partial dynamical symmetry and quasi dynamical symmetry, which can be beautifully illustrated in the context of the interacting boson model. The main conclusion of the analysis is that dynamical symmetries are scarce while their partial and quasi extensions are ubiquitous.

Keywords

interacting boson model

Cite this article

Download citation ▾
P. Van Isacker. Symmetries of the interacting boson model. Front. Phys., 2018, 13(6): 132107 https://doi.org/10.1007/s11467-018-0833-8

References

[1]
A. Arima and F. Iachello, Collective nuclear states as representations of a SU(6) group, Phys. Rev. Lett. 35(16), 1069 (1975)
CrossRef ADS Google scholar
[2]
J. Rainwater, Nuclear energy level argument for a spheroidal nuclear model, Phys. Rev. 79(3), 432 (1950)
CrossRef ADS Google scholar
[3]
A. Bohr, Mat. Fys. Medd. Dan. Vid. Selsk. 26, 14 (1952)
[4]
D. M. Brink, A. F. R. De Toledo Piza, and A. K. Kerman, Interval rules and intensity ratios in vibrating spherical nuclei, Phys. Lett. 19(5), 413 (1965)
CrossRef ADS Google scholar
[5]
A. Bohr and B. R. Mottelson, Mat. Fys. Medd. Dan. Vid. Selsk. 27, 16 (1953)
[6]
L. Wilets and M. Jean, Surface oscillations in even-even nuclei, Phys. Rev. C 102, 788 (1956)
[7]
A. Arima, T. Otsuka, F. Iachello, and I. Talmi, Collective nuclear states as symmetric couplings of proton and neutron excitations, Phys. Lett. B 66(3), 205 (1977)
CrossRef ADS Google scholar
[8]
T. Otsuka, A. Arima, and F. Iachello, Nuclear shell model and interacting bosons, Nucl. Phys. A 309(1–2), 1 (1978)
CrossRef ADS Google scholar
[9]
T. Otsuka, A. Arima, F. Iachello, and I. Talmi, Shell model description of interacting bosons, Phys. Lett. B 76(2), 139 (1978)
CrossRef ADS Google scholar
[10]
J. P. Elliott and A. P. White, An isospin invariant form of the interacting boson model, Phys. Lett. B 97(2), 169 (1980)
CrossRef ADS Google scholar
[11]
J. P. Elliott and J. A. Evans, An intrinsic spin for interacting bosons, Phys. Lett. B 101(4), 216 (1981)
CrossRef ADS Google scholar
[12]
E. Wigner, On the consequences of the symmetry of the nuclear hamiltonian on the spectroscopy of nuclei, Phys. Rev. 51(2), 106 (1937)
CrossRef ADS Google scholar
[13]
G. Racah, Theory of complex spectra (III), Phys. Rev. 63(9–10), 367 (1943)
CrossRef ADS Google scholar
[14]
G. Racah, Theory of complex spectra (IV), Phys. Rev. 76(9), 1352 (1949)
CrossRef ADS Google scholar
[15]
J. P. Elliott, Collective motion in the nuclear shell model (I): Classification schemes for states of mixed configurations, Proc. R. Soc. Lond. A 245(1240), 128 (1958)
CrossRef ADS Google scholar
[16]
J. P. Elliott, Collective motion in the nuclear shell model (II): The introduction of intrinsic wave-functions, Proc. R. Soc. Lond. A 245(1243), 562 (1958)
CrossRef ADS Google scholar
[17]
F. Iachello, Lie Algebras and Applications, Springer, Berlin, 2006
[18]
A. Frank, J. Jolie, and P. Van Isacker, Symmetries in Atomic Nuclei, Springer, Berlin, 2009
CrossRef ADS Google scholar
[19]
P. Van Isacker, Partial and quasi dynamical symmetries in nuclei, Nucl. Phys. News 24(3), 23 (2014)
CrossRef ADS Google scholar
[20]
J. N. Ginocchio and M. W. Kirson, Relationship between the Bohr collective hamiltonian and the interacting-boson model, Phys. Rev. Lett. 44(26), 1744 (1980)
CrossRef ADS Google scholar
[21]
A. E. L. Dieperink, O. Scholten, and F. Iachello, Classical limit of the interacting-boson model, Phys. Rev. Lett. 44(26), 1747 (1980)
CrossRef ADS Google scholar
[22]
A. Bohr and B. R. Mottelson, Features of nuclear deformations produced by the alignment of individual particles or pairs, Phys. Scr. 22(5), 468 (1980)
CrossRef ADS Google scholar
[23]
A. Bohr and B. R. Mottelson, Nuclear Structure (II): Nuclear Deformations, Benjamin, New York, 1975
[24]
R. Gilmore, Catastrophe Theory for Scientists and Engineers, Wiley, New York, 1981
[25]
E. López-Moreno and O. Castaños, Shapes and stability within the interacting boson model: Dynamical symmetries, Phys. Rev. C 54(5), 2374 (1996)
CrossRef ADS Google scholar
[26]
J. Jolie, P. Cejnar, R. F. Casten, S. Heinze, A. Linnemann, and V. Werner, Triple point of nuclear deformations, Phys. Rev. Lett. 89(18), 182502 (2002)
CrossRef ADS Google scholar
[27]
R. F. Casten, Shape phase transitions and critical-point phenomena in atomic nuclei, Nat. Phys. 2(12), 811 (2006)
[28]
P. Cejnar, J. Jolie, and R. F. Casten, Quantum phase transitions in the shapes of atomic nuclei, Rev. Mod. Phys. 82(3), 2155 (2010)
CrossRef ADS Google scholar
[29]
O. Castaños, E. Chacón, A. Frank, and M. Moshinsky, Group theory of the interacting boson model of the nucleus, J. Math. Phys. 20(1), 35 (1979)
CrossRef ADS Google scholar
[30]
A. Arima and F. Iachello, Interacting boson model of collective states (I): The vibrational limit, Ann. Phys. 99(2), 253 (1976)
CrossRef ADS Google scholar
[31]
A. Arima and F. Iachello, Interacting boson model of collective nuclear states (II): The rotational limit, Ann. Phys. 111(1), 201 (1978)
CrossRef ADS Google scholar
[32]
A. Arima and F. Iachello, Interacting boson model of collective nuclear states (IV): The O(6) limit, Ann. Phys. 123(2), 468 (1979)
CrossRef ADS Google scholar
[33]
A. M. Shirokov, N. A. Smirnova, and Yu. F. Smirnov, Parameter symmetry of the interacting boson model, Phys. Lett. B 434(3–4), 237 (1998)
CrossRef ADS Google scholar
[34]
F. Iachello and A. Arima, The Interacting Boson Model, Cambridge University Press, Cambridge, 1987
CrossRef ADS Google scholar
[35]
D. D. Warner, and R. F. Casten, Predictions of the interacting boson approximation in a consistent Qframework, Phys. Rev. C 28(4), 1798 (1983)
CrossRef ADS Google scholar
[36]
P. O. Lipas, P. Toivonen, and D. D. Warner, IBA consistent-Qformalism extended to the vibrational region, Phys. Lett. B 155(5–6), 295 (1985)
CrossRef ADS Google scholar
[37]
R. F. Casten, Status of experimental tests of the IBA, in: Interacting Bose–Fermi Systems in Nuclei, edited by F. Iachello, Plenum, New York, 1981, page 3
CrossRef ADS Google scholar
[38]
P. Cejnar and J. Jolie, Dynamical-symmetry content of transitional IBM-1 hamiltonians, Phys. Lett. B 420(3–4), 241 (1998)
CrossRef ADS Google scholar
[39]
Y. Alhassid and A. Leviatan, Partial dynamical symmetry, J. Phys. A 25(23), L1265 (1992)
CrossRef ADS Google scholar
[40]
A. Leviatan, Partial dynamical symmetry in deformed nuclei, Phys. Rev. Lett. 77(5), 818 (1996)
CrossRef ADS Google scholar
[41]
A. Leviatan, A. Novoselsky, and I. Talmi, O(5) symmetry in IBA-1 — the O(6)–U(5) transition region, Phys. Lett. B 172(2), 144 (1986)
CrossRef ADS Google scholar
[42]
P. Van Isacker, Dynamical symmetry and higher-order interactions, Phys. Rev. Lett. 83(21), 4269 (1999)
CrossRef ADS Google scholar
[43]
A. Leviatan and P. Van Isacker, Generalized partial dynamical symmetry in nuclei, Phys. Rev. Lett. 89(22), 222501 (2002)
CrossRef ADS Google scholar
[44]
A. Leviatan, Partial dynamical symmetries, Prog. Part. Nucl. Phys. 66(1), 93 (2011)
CrossRef ADS Google scholar
[45]
C. Kremer, J. Beller, A. Leviatan, N. Pietralla, G. Rainovski, R. Trippel, and P. Van Isacker, Linking partial and quasi dynamical symmetries in rotational nuclei, Phys. Rev. C 89, 041302(R) (2014)
[46]
F. Pan and J. P. Draayer, New algebraic solutions for SO(6)↔U(5) transitional nuclei in the interacting boson model, Nucl. Phys. A 636(2), 156 (1998)
CrossRef ADS Google scholar
[47]
D. J. Rowe, P. Rochford, and J. Repka, Dynamic structure and embedded representation in physics: The group theory of the adiabatic approximation, J. Math. Phys. 29(3), 572 (1988)
CrossRef ADS Google scholar
[48]
D. J. Rowe, C. Bahri, and W. Wijesundera, Exactly solvable model of a superconducting to rotational phase transition, Phys. Rev. Lett. 80(20), 4394 (1998)
CrossRef ADS Google scholar
[49]
C. Bahri and D. J. Rowe, SU(3) quasi-dynamical symmetry as an organizational mechanism for generating nuclear rotational motions, Nucl. Phys. A 662(1–2), 125 (2000)
[50]
M. Macek, J. Dobeš, and P. Cejnar, Transition from γ-rigid to γ-soft dynamics in the interacting boson model: Quasicriticality and quasidynamical symmetry, Phys. Rev. C 80(1), 014319 (2009)
CrossRef ADS Google scholar
[51]
D. Bonatsos, E. A. McCutchan, and R. F. Casten, SU(3) quasidynamical symmetry underlying the Alhassid–Whelan arc of regularity, Phys. Rev. Lett. 104(2), 022502 (2010)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
PDF(8757 KB)

Accesses

Citations

Detail

Sections
Recommended

/