Two-qubit entangled state teleportation via optimal POVM and partially entangled GHZ state

Kan Wang, Xu-Tao Yu, Zai-Chen Zhang

PDF(524 KB)
PDF(524 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (5) : 130320. DOI: 10.1007/s11467-018-0832-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Two-qubit entangled state teleportation via optimal POVM and partially entangled GHZ state

Author information +
History +

Abstract

Quantum teleportation is of significant meaning in quantum information. In this paper, we study the probabilistic teleportation of a two-qubit entangled state via a partially entangled Greenberger- Horne-Zeilinger (GHZ) state when the quantum channel information is only available to the sender. We formulate it as an unambiguous state discrimination problem and derive exact optimal positive-operator valued measure (POVM) operators for maximizing the probability of unambiguous discrimination. Only one three-qubit POVM for the sender, one two-qubit unitary operation for the receiver, and two cbits for outcome notification are required in this scheme. The unitary operation is given in the form of a concise formula, and the fidelity is calculated. The scheme is further extended to more general case for transmitting a two-qubit entangled state prepared in arbitrary form. We show this scheme is flexible and applicable in the hop-by-hop teleportation situation.

Keywords

probabilistic teleportation / optimal POVM / state discrimination / average fidelity

Cite this article

Download citation ▾
Kan Wang, Xu-Tao Yu, Zai-Chen Zhang. Two-qubit entangled state teleportation via optimal POVM and partially entangled GHZ state. Front. Phys., 2018, 13(5): 130320 https://doi.org/10.1007/s11467-018-0832-9

References

[1]
S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, and S. L. Braunstein, Advances in quantum teleportation, Nat. Photonics 9(10), 641 (2015)
CrossRef ADS Google scholar
[2]
C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein– Podolsky–Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)
CrossRef ADS Google scholar
[3]
L. Gyongyosi and S. Imre, Entanglement-gradient routing for quantum networks, Sci. Rep. 7(1), 14255 (2017)
CrossRef ADS Google scholar
[4]
K. Wang, X. T. Yu, S. L. Lu, and Y. X. Gong, Quantum wireless multihop communication based on arbitrary Bell pairs and teleportation, Phys. Rev. A 89(2), 022329 (2014)
CrossRef ADS Google scholar
[5]
N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Quantum cryptography, Rev. Mod. Phys. 74(1), 145 (2002)
CrossRef ADS Google scholar
[6]
H. L. Huang, Y. W. Zhao, T. Li, F. G. Li, Y. T. Du, X. Q. Fu, S. Zhang, X. Wang, and W. S. Bao, Homomorphic encryption experiments on IBM’s cloud quantum computing platform, Front. Phys. 12(1), 120305 (2017)
CrossRef ADS Google scholar
[7]
N. Gisin, How far can one send a photon? Front. Phys. 10(6), 100307 (2015)
CrossRef ADS Google scholar
[8]
S. Imre and L. Gyongyosi, Advanced Quantum Communications: An En-gineering Approach, Wiley-IEEE Press, 2013
[9]
D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, Experimental quantum teleportation, Nature 390(6660), 575 (1997)
CrossRef ADS Google scholar
[10]
X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Quantum teleportation of multiple degrees of freedom of a single photon, Nature 518(7540), 516 (2015)
CrossRef ADS Google scholar
[11]
L. Gyongyosi, S. Imre, and H. V. Nguyen, A survey on quantum channel capacities, IEEE Comm. Surv. and Tutor. 20(2), 1149 (2018)
CrossRef ADS Google scholar
[12]
R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81(2), 865 (2009)
CrossRef ADS Google scholar
[13]
L. Gyongyosi, Quantum imaging of high-dimensional Hilbert spaces with Radon transform, Int. J. Circuit Theory Appl. 45(7), 1029 (2017)
CrossRef ADS Google scholar
[14]
M. Ikram, S. Y. Zhu, and M. S. Zubairy, Quantum teleportation of an entangled state, Phys. Rev. A 62(2), 022307 (2000)
CrossRef ADS Google scholar
[15]
W. L. Li, C. F. Li, and G. C. Guo, Probabilistic teleportation and entanglement matching, Phys. Rev. A 61(3), 034301 (2000)
CrossRef ADS Google scholar
[16]
X. F. Cai, X. T. Yu, L. H. Shi, and Z. C. Zhang, Partially entangled states bridge in quantum teleportation, Front. Phys. 9(5), 646 (2014)
CrossRef ADS Google scholar
[17]
D. Liu, Z. Huang, and X. Guo, Probabilistic teleportation via quantum channel with partial information, Entropy (Basel) 17(6), 3621 (2015)
CrossRef ADS Google scholar
[18]
P. Y. Xiong, X. T. Yu, H. T. Zhan, and Z. C. Zhang, Multiple teleportation via partially entangled GHZ state, Front. Phys. 11(4), 110303 (2016)
CrossRef ADS Google scholar
[19]
D. Qiu and L. Li, Minimum-error discrimination of quantum states: Bounds and comparisons, Phys. Rev. A 81(4), 042329 (2010)
CrossRef ADS Google scholar
[20]
S. Bandyopadhyay, Unambiguous discrimination of linearly independent pure quantum states: Optimal average probability of success, Phys. Rev. A 90(3), 030301 (2014)
CrossRef ADS Google scholar
[21]
H. Sugimoto, T. Hashimoto, M. Horibe, and A. Hayashi, Complete solution for unambiguous discrimination of three pure states with real inner products, Phys. Rev. A 82(3), 032338 (2010)
CrossRef ADS Google scholar
[22]
A. Chefles, Unambiguous discrimination between linearly independent quantum states, Phys. Lett. A 239(6), 339 (1998)
CrossRef ADS Google scholar
[23]
Y. C. Eldar, A semidefinite programming approach to optimal unambiguous discrimination of quantum states, IEEE Trans. Inf. Theory 49(2), 446 (2003)
CrossRef ADS Google scholar
[24]
K. Nakahira, K. Kato, and T. S. Usuda, Generalized quantum state discrimination problems, Phys. Rev. A 91(5), 052304 (2015)
CrossRef ADS Google scholar
[25]
R. B. M. Clarke, A. Chefles, S. M. Barnett, and E. Riis, Experimental demonstration of optimal unambiguous state discrimination, Phys. Rev. A 63(4), 040305 (2001)
CrossRef ADS Google scholar
[26]
O. Jiménez, X. Sánchez-Lozano, E. Burgos-Inostroza, A. Delgado, and C. Saavedra, Experimental scheme for unambiguous discrimination of linearly independent symmetric states, Phys. Rev. A 76, 062107 (2007)
CrossRef ADS Google scholar
[27]
S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004
CrossRef ADS Google scholar
[28]
W. Son, J. Lee, M. S. Kim, and Y. J. Park, Conclusive teleportation of a d-dimensional unknown state, Phys. Rev. A 64(6), 064304 (2001)
CrossRef ADS Google scholar
[29]
L. Roa, A. Delgado, and I. Fuentes-Guridi, Optimal conclusive teleportation of quantum states, Phys. Rev. A 68(2), 022310 (2003)
CrossRef ADS Google scholar
[30]
H. Liu, X. Q. Xiao, and J. M. Liu, Conclusive teleportation of an arbitrary three-particle state via positive operator-valued measurement, Commum. Theor. Phys. 50(1), 69 (2008)
CrossRef ADS Google scholar
[31]
G. Brassard, P. Horodecki, and T. Mor, TelePOVM—A generalized quantum teleportation scheme, IBM J. Res. Develop. 48(1), 87 (2004)
CrossRef ADS Google scholar
[32]
C. H. Bennett and D. P. DiVincenzo, Towards an engineering era? Nature 377(6548), 389 (1995)
CrossRef ADS Google scholar
[33]
B. He and J. A. Bergou, A general approach to physical realization of unambiguous quantum-state discrimination, Phys. Lett. A 356(4–5), 306 (2006)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(524 KB)

Accesses

Citations

Detail

Sections
Recommended

/