Phase transition of the frustrated antiferromagntic J1-J2-J3 spin-1/2 Heisenberg model on a simple cubic lattice

Ai-Yuan Hu, Huai-Yu Wang

PDF(1486 KB)
PDF(1486 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (1) : 13605. DOI: 10.1007/s11467-018-0831-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Phase transition of the frustrated antiferromagntic J1-J2-J3 spin-1/2 Heisenberg model on a simple cubic lattice

Author information +
History +

Abstract

We have comprehensively investigated the frustrated J1-J2-J3 Heisenberg model on a simple cubic lattice. This model allows three regimes of magnetic order, viz., (π; π; π), (0; π; π) and (0; 0; π), denoted as AF1, AF2, and AF3, respectively. The effects of the interplay of neighboring couplings on the model are studied in the entire temperature range. The zero temperature magnetic properties of this model are discussed utilizing the linear spin wave (LSW) theory, nonlinear spin wave (NLSW) theory, and Green’s function (GF) method. The zero temperature phase diagrams evaluated by the LSW and NLSW methods are illustrated, and are observed to exhibit different parameter boundaries. In certain regions and along the parameter boundaries, the possible phase transformations driven by the parameters are discussed. The results obtained using the LSW, NLSW, and GF methods are compared with those obtained using the series expansion (SE) method, and are observed to be in good agreement when the value of J2 is not close to the parameter boundaries. The ground state energies obtained using the LSW and NLSW methods are close to that obtained using the SE method. At finite temperatures, only the GF method is employed to evaluate the magnetic properties, and the calculated phase diagram is observed to be identical to the classical phase diagram. The results indicate that at the parameter boundaries, a temperature-driven first-order phase transition between AF1 and AF2 may occur along the boundary line. Along the AF1-AF3 and AF2-AF3 boundary lines, AF3 is less stable than AF1 and AF2. Our calculated critical temperature agrees with that obtained using Monte Carlo simulations and pseudofermion functional renormalization group scheme.

Keywords

quantized spin models / quantum phase transitions / antiferromagnetics

Cite this article

Download citation ▾
Ai-Yuan Hu, Huai-Yu Wang. Phase transition of the frustrated antiferromagntic J1-J2-J3 spin-1/2 Heisenberg model on a simple cubic lattice. Front. Phys., 2019, 14(1): 13605 https://doi.org/10.1007/s11467-018-0831-x

References

[1]
C. Lacroix, P. Mendels, and F. Mila, Introduction to Frustrated Magnetism, Springer, Berlin, 2011
CrossRef ADS Google scholar
[2]
H. T. Diep, Frustrated Spin Systems, 2nd Ed., World Scientific, Singapore, 2013
CrossRef ADS Google scholar
[3]
J. Richter, J. Schulenburg, and A. Honecker, in: Quantum Magnetism, edited by U. Schollwöck, J. Richter, D. J. J. Farnell, and R. F. Bishop, Lecture Notes in Physics Vol. 645, Springer, Berlin, 2004, pp 85–153
CrossRef ADS Google scholar
[4]
L. Capriotti, F. Becca, A. Parola, and S. Sorella, Resonating Valence Bond Wave Functions for Strongly Frustrated Spin Systems, Phys. Rev. Lett. 87(9), 097201 (2001)
CrossRef ADS Google scholar
[5]
J. Sirker, Z. Weihong, O. P. Sushkov, and J. Oitmaa, J1-J2 model: First-order phase transition versus deconfinement of spinons, Phys. Rev. B 73(18), 184420 (2006)
CrossRef ADS Google scholar
[6]
J. Richter, N. B. Ivanov, and K. Retzlaff, On the violation of Marshall–Peierls sign rule in the frustrated J1-J2 Heisenberg antiferromagnet, Europhys. Lett. 25(7), 545 (1994)
CrossRef ADS Google scholar
[7]
M. Mambrini, A. Läuchli, D. Poilblanc, and F. Mila, Plaquette valence-bond crystal in the frustrated Heisenberg quantum antiferromagnet on the square lattice, Phys. Rev. B 74(14), 144422 (2006)
CrossRef ADS Google scholar
[8]
R. F. Bishop, P. H. Y. Li, R. Darradi, J. Schulenburg, and J. Richter, Effect of anisotropy on the groundstate magnetic ordering of the spin-half quantum JXXZ1-JXXZ2 model on the square lattice, Phys. Rev. B 78(5), 054412 (2008)
CrossRef ADS Google scholar
[9]
R. Darradi, O. Derzhko, R. Zinke, J. Schulenburg, S. E. Krüger, and J. Richter, Ground state phases of the spin- 1/2 J1-J2 Heisenberg antiferromagnet on the square lattice: A high-order coupled cluster treatment, Phys. Rev. B 78(21), 214415 (2008)
CrossRef ADS Google scholar
[10]
V. Murg, F. Verstraete, and J. I. Cirac, Exploring frustrated spin systems using projected entangled pair states, Phys. Rev. B 79(19), 195119 (2009)
CrossRef ADS Google scholar
[11]
J. Richter and J. Schulenburg, The spin-1/2 J1 t J2 Heisenberg antiferromagnet on the square lattice: Exact diagonalization for N=40 spins, Eur. Phys. J. B 73(1), 117 (2010)
CrossRef ADS Google scholar
[12]
J. Reuther and P. Wölfle, J1-J2 frustrated twodimensional Heisenberg model: Random phase approximation and functional renormalization group, Phys. Rev. B 81(14), 144410 (2010)
CrossRef ADS Google scholar
[13]
H. C. Jiang, H. Yao, and L. Balents, Spin liquid ground state of the spin-1/2 square J1-J2 Heisenberg model, Phys. Rev. B 86(2), 024424 (2012)
CrossRef ADS Google scholar
[14]
L. Wang, D. Poilblanc, Z. C. Gu, X. G. Wen, and F. Verstraete, Constructing a gapless spin-liquid state for the spin-1/2 J1-J2 heisenberg model on a square lattice, Phys. Rev. Lett. 111(3), 037202 (2013)
CrossRef ADS Google scholar
[15]
W.-J. Hu, F. Becca, A. Parola and S. Sorella, Direct evidence for a gapless Z2 spin liquid by frustrating Néel antiferromagnetism, Phys. Rev. B 88(6), 060402(R) (2013)
[16]
S. S. Gong, W. Zhu, D. N. Sheng, O. I. Motrunich, and M. P. A. Fisher, Plaquette ordered phase and quantum phase diagram in the spin-1/2 J1-J2 square Heisenberg model, Phys. Rev. Lett. 113(2), 027201 (2014)
CrossRef ADS Google scholar
[17]
A. Metavitsiadis, D. Sellmann and S. Eggert, Spin-liquid versus dimer phases in an anisotropic J1-J2 frustrated square antiferromagnet, Phys. Rev. B 89(24), 241104(R) (2014)
[18]
J. Richter, R. Zinke, and D. J. J. Farnell, The spin- 1/2 square-lattice J1-J2 model: The spin-gap issue, Eur. Phys. J. B 88(1), 2 (2015)
CrossRef ADS Google scholar
[19]
A. F. Barabanov, A. V. Mikheyenkov, and N. A. Kozlov, Quantum phase transition in a frustrated twodimensional magnetic system: A matrix projection approach, JETP Lett. 102(5), 301 (2015)
CrossRef ADS Google scholar
[20]
S. Morita, R. Kaneko, and M. Imada, Quantum spin liquid in spin 1/2 J1-J2 Heisenberg model on square lattice: Many-variable variational Monte Carlo study combined with quantum-number projections, J. Phys. Soc. Jpn. 84(2), 024720 (2015)
CrossRef ADS Google scholar
[21]
T. P. Cysne and M. B. Silva Neto, Magnetic quantum phase transitions of the two-dimensional antiferromagnetic J1-J2 Heisenberg model, Europhys. Lett. 112(4), 47002 (2015)
CrossRef ADS Google scholar
[22]
C. A. Lamas, D. C. Cabra, P. Pujol, and G. L. Rossini, Path integral approach to order by disorder selection in partially polarized quantum spin systems, Eur. Phys. J. B 88(7), 176 (2015)
CrossRef ADS Google scholar
[23]
K. Majumdar and T. Datta, Zero temperature phases of the frustrated J1-J2 antiferromagnetic spin-1/2 Heisenberg model on a simple cubic lattice,J. Stat. Phys. 139(4), 714 (2010)
CrossRef ADS Google scholar
[24]
A. F. Barabanov, V. M. Beresovsky, and E. Ža¸sinas, Quantum phase transitions in a three-dimensional frustrated S= 12 Heisenberg antiferromagnet, Phys. Rev. B 52(14), 10177 (1995)
CrossRef ADS Google scholar
[25]
D. J. J. Farnell, O. Götze, and J. Richter, Ground-state ordering of the J1-J2 model on the simple cubic and body-centered cubic lattices, Phys. Rev. B 93(23), 235123 (2016)
CrossRef ADS Google scholar
[26]
J. R. Viana, J. R. de Sousa, and M. A. Continentino, Quantum phase transition in the threedimensional anisotropic frustrated Heisenberg antiferromagnetic model, Phys. Rev. B 77(17), 172412 (2008)
CrossRef ADS Google scholar
[27]
C. Pinettes and H. T. Diep, Phase transition and phase diagram of the J1-J2 Heisenberg model on a simple cubic lattice, J. Appl. Phys. 83(11), 6317 (1998)
CrossRef ADS Google scholar
[28]
Y. Iqbal, R. Thomale, F. Parisen Toldin, S. Rachel, and J. Reuther, Functional renormalization group for threedimensional quantum magnetism, Phys. Rev. B 94(14), 140408(R) (2016)
[29]
J. Oitmaa, Frustrated J1-J2-J3 Heisenberg antiferromagnet on the simple cubic lattice, Phys. Rev. B 95(1), 014427 (2017)
CrossRef ADS Google scholar
[30]
F. Ma, Z. Y. Lu, and T. Xiang, Arsenic-bridged antiferromagnetic superexchange interactions in LaFeAsO, Phys. Rev. B 78(22), 224517 (2008)
CrossRef ADS Google scholar
[31]
A. S. T. Pires, Anisotropic easy axis S= 1 antiferromagnetic Heisenberg model with competitive interaction on a square lattice, Solid State Commun. 193, 56 (2014)
CrossRef ADS Google scholar
[32]
H.Y. Wang, Green’s Function in Condensed Matter Physics, Alpha Science International Ltd. and Science Press, Beijing, 2012
[33]
J. Oitmaa, C. J. Hamer, and W. Zheng, Heisenberg antiferromagnet and the XYmodel at T= 0 in three dimensions, Phys. Rev. B 50(6), 3877 (1994)
CrossRef ADS Google scholar
[34]
A. W. Sandvik, Critical temperature and the transition from quantum to classical order parameter fluctuations in the three-dimensional Heisenberg antiferromagnet, Phys. Rev. Lett. 80(23), 5196 (1998)
CrossRef ADS Google scholar
[35]
H. Y. Wang, L. J. Zhai, and M. Qian, The internal energies of Heisenberg magnetic systems, J. Magn. Magn. Mater. 354(3), 309 (2014)
CrossRef ADS Google scholar
[36]
P. Fröbrich and P. J. Kuntz, Many-body Green’s function theory of Heisenberg films, Phys. Rep. 432(5–6), 223 (2006)
CrossRef ADS Google scholar
[37]
T. Holstein and H. Primakoff, Field dependence of the intrinsic domain magnetization of a ferromagnet, Phys. Rev. 58(12), 1098 (1940)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1486 KB)

Accesses

Citations

Detail

Sections
Recommended

/