Study of various few-body systems using Gaussian expansion method (GEM)

Emiko Hiyama, Masayasu Kamimura

PDF(5120 KB)
PDF(5120 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (6) : 132106. DOI: 10.1007/s11467-018-0828-5
REVIEW ARTICLE
REVIEW ARTICLE

Study of various few-body systems using Gaussian expansion method (GEM)

Author information +
History +

Abstract

We review our calculation method, Gaussian expansion method (GEM), to solve accurately the Schrödinger equations for bound, resonant and scattering states of few-body systems. Use is made of the Rayleigh-Ritz variational method for bound states, the complex-scaling method for resonant states and the Kohn-type variational principle to S-matrix for scattering states. GEM was proposed 30 years ago and has been applied to a variety of subjects in few-body (3- to 5-body) systems, such as 1) few-nucleon systems, 2) few-body structure of hypernuclei, 3) clustering structure of light nuclei and unstable nuclei, 4) exotic atoms/molecules, 5) cold atoms, 6) nuclear astrophysics and 7) structure of exotic hadrons. Showing examples in our published papers, we explain i) high accuracy of GEM calculations and its reason, ii) wide applicability of GEM to various few-body systems, iii) successful predictions by GEM calculations before measurements. The total bound-state wave function is expanded in terms of few-body Gaussian basis functions spanned over all the sets of rearrangement Jacobi coordinates. Gaussians with ranges in geometric progression work very well both for shortrange and long-range behavior of the few-body wave functions. Use of Gaussians with complex ranges gives much more accurate solution than in the case of real-range Gaussians, especially, when the wave function has many nodes (oscillations). These basis functions can well be applied to calculations using the complex-scaling method for resonances. For the few-body scattering states, the amplitude of the interaction region is expanded in terms of those few-body Gaussian basis functions.

Keywords

few-body problems / Gaussian expansion method / Gaussian ranges in geometric progression

Cite this article

Download citation ▾
Emiko Hiyama, Masayasu Kamimura. Study of various few-body systems using Gaussian expansion method (GEM). Front. Phys., 2018, 13(6): 132106 https://doi.org/10.1007/s11467-018-0828-5

References

[1]
M. Kamimura, Nonadiabatic coupled-rearrangementchannel approach to muonic molecules, Phys. Rev. A 38(2), 621 (1988)
CrossRef ADS Google scholar
[2]
H. Kameyama, M. Kamimura, and Y. Fukushima, Coupled-rearrangement-channel Gaussian-basis variational method for trinucleon bound states, Phys. Rev. C 40(2), 974 (1989)
CrossRef ADS Google scholar
[3]
E. Hiyama, Y. Kino, and M. Kamimura, Gaussian expansion method for few-body systems, Prog. Part. Nucl. Phys. 51(1), 223 (2003)
CrossRef ADS Google scholar
[4]
E. Hiyama, Few-body aspects of hypernuclear physics, Few-Body Syst. 53(3–4), 189 (2012)
CrossRef ADS Google scholar
[5]
E. Hiyama, Gaussian expansion method for few-body systems and its applications to atomic and nuclear physics, Prog. Theor. Exp. Phys. 2012(1), 01A204 (2012)
[6]
D. E. Groom, (Particle Data Group), Reviews, tables, and plots in the 2000 review of particle physics, Eur. Phys. J. C 15, 1 (2000)
[7]
H. A. Torii, R. S. Hayano, M. Hori, T. Ishikawa, N. Morita, , Laser measurements of the density shifts of resonance lines in antiprotonic helium atoms and stringent constraint on the antiproton charge and mass, Phys. Rev. A 59(1), 223 (1999)
CrossRef ADS Google scholar
[8]
Y. Kino, M. Kamimura, and H. Kudo, High-accuracy 3- body coupled-channel calculation of metastable states of antiprotonic helium atoms, Nucl. Phys. A 631, 649 (1998)
CrossRef ADS Google scholar
[9]
Y. Kino, M. Kamimura, and H. Kudo, Non-adiabatic high-precision calculation of antiprotonic helium atomcules, Hyperfine Interact. 119(1/4), 201 (1999)
CrossRef ADS Google scholar
[10]
E. Hiyama, RCNP Physics Report (Research Center for Nuclear Physics, Osaka Univ.), RCNP-P 132, 35 (1994)
[11]
E. Hiyama, Proceedings of International Workshop on the 4-Body Problems, Uppsala, 1995 (Uppsala Univ., 1996), p. 28
[12]
S. Aoyama, T. Myo, K. Kato, and K. Ikeda, The complex scaling method for many-body resonances and its applications to three-body resonances, Prog. Theor. Phys. 116(1), 1 (2006)
CrossRef ADS Google scholar
[13]
M. Kamimura, A coupled channel variational method for microscopic study of reactions between complex nuclei, Prog. Theor. Phys. Suppl.62, 236 (1977)
CrossRef ADS Google scholar
[14]
E. Hiyama and M. Kamimura, Variational calculation of 4He tetramer ground and excited states using a realistic pair potential, Phys. Rev. A 85(2), 022502 (2012)
CrossRef ADS Google scholar
[15]
E. Hiyama and M. Kamimura, Linear correlations between 4He trimer and tetramer energies calculated with various realistic 4He potentials, Phys. Rev. A 85(6), 062505 (2012)
CrossRef ADS Google scholar
[16]
E. Hiyama and M. Kamimura, Universality in Efimovassociated tetramers in 4He, Phys. Rev. A 90(5), 052514 (2014)
CrossRef ADS Google scholar
[17]
S. Ohtsubo, Y. Fukushima, M. Kamimura, and E. Hiyama, Complex-scaling calculation of three-body resonances using complex-range Gaussian basis functions: Application to 3αresonances in 12C, Prog. Theor. Exp. Phys. 2013(7), 073D02 (2013)
[18]
T. Matsumoto, T. Kamizato, K. Ogata, Y. Iseri, E. Hiyama, M. Kamimura, and M. Yahiro, New treatment of breakup continuum in the method of continuum discretized coupled channels, Phys. Rev. C 68(6), 064607 (2003)
CrossRef ADS Google scholar
[19]
T. Matsumoto, E. Hiyama, K. Ogata, Y. Iseri, M. Kamimura, S. Chiba, and M. Yahiro, Continuumdiscretized coupled-channels method for four-body nuclear breakup in 6He+12C scattering, Phys. Rev. C 70(6), 061601 (2004)
CrossRef ADS Google scholar
[20]
M. Kamimura, E. Hiyama, and Y. Kino, Big bang nucleosynthesis reactions catalyzed by a long lived negatively charged leptonic particle, Prog. Theor. Phys. 121(5), 1059 (2009)
CrossRef ADS Google scholar
[21]
H. Preuss, Bemerkungen zum Self-consistent-field-Verfahren und zur Methode der Konfigurationenwechselwirkung in der Quantenchemie, Z. Naturforsch 11a, 823 (1956)
[22]
J. L. Whitten, Gaussian expansion of hydrogen-atom wavefunctions, J. Chem. Phys. 39(2), 349 (1963)
CrossRef ADS Google scholar
[23]
H. Sambe, Use of 1 s Gaussian wavefunctions for molecular calculations (I): The hydrogen atom and the hydrogen molecule ion, J. Chem. Phys. 42(5), 1732 (1965)
CrossRef ADS Google scholar
[24]
J. F. Harrison, On the Gaussian-Lobe representation of atomic orbitals, J. Chem. Phys. 46(3), 1115 (1967)
CrossRef ADS Google scholar
[25]
A. A. Frost, Floating spherical gaussian orbital model of molecular structure (I): Computational procedure, LiH as an example, J. Chem. Phys. 47(10), 3707 (1967)
CrossRef ADS Google scholar
[26]
K. Nagamine and M. Kamimura, Muon catalyzed fusion: Interplay between nuclear and atomic physics, Advance in Nuclear Physics 24, 151 (1998)
[27]
V. I. Korobov, I. V. Puzynin, and S. I. Vinitsky, A variational calculation of weakly bound rotationalvibrational states of the mesic molecules ddμand dtμ, Phys. Lett. B 196(3), 272 (1987)
CrossRef ADS Google scholar
[28]
S. A. Alexander and H. J. Monkhorst, High-accuracy calculation of muonic molecules using random-tempered basis sets, Phys. Rev. 38(1), 26 (1988)
CrossRef ADS Google scholar
[29]
R. B. Wiringa, R. A. Smith, and T. A. Ainsworth, Nucleon-nucleon potentials with and without D(1232) degrees of freedom, Phys. Rev. C 29(4), 1207 (1984)
CrossRef ADS Google scholar
[30]
M. Kamimura and H. Kameyama, Coupled rearrangement channel calculations of muonic molecules and A= 3 nuclei, Nucl. Phys. A 508, 17 (1990)
CrossRef ADS Google scholar
[31]
S. A. Coon, M. D. Scadron, P. C. McNamee, B. R. Barrett, D. W. E. Blatt, and B. H. J. McKellar, The two-pion-exchange three-nucleon potential and nuclear matter, Nucl. Phys. A 317(1), 242 (1979)
CrossRef ADS Google scholar
[32]
C. R. Chen, G. L. Payne, J. L. Frier, and B. F. Gibson, Convergence of Faddeev partial-wave series for triton ground state, Phys. Rev. C 31(6), 2266 (1985)
CrossRef ADS Google scholar
[33]
S. Ishikawa and T. Sasakawa, Faddeev partial-wave calculations with a three-nucleon potential for the triton ground state, Few-Body Syst. 1(3), 143 (1986)
CrossRef ADS Google scholar
[34]
T. Sasakawa, in: Proceedings of the Workshop on Electron Nucleus Scattering, Elba International physics Center, Italy, 1988
[35]
Y. Wu, S. Ishikawa, and T. Sasakawa, Private communications (1989)
[36]
G. L. Payne and B. F. Gibson, Variational aspects of Faddeev calculations, Few-Body Syst. 14(3), 117 (1993)
CrossRef ADS Google scholar
[37]
H. Kamada, A. Nogga, W. Glöckle, E. Hiyama, M. Kamimura, , Leidemann, and G. Orlandini, Benchmark test calculation of a four-nucleon bound state, Phys. Rev. C 64(4), 044001 (2001)
CrossRef ADS Google scholar
[38]
B. S. Pudliner, V. R. Pandharipande, J. Carlson, S. C. Pieper, and R. B. Wiringa, Quantum Monte Carlo calculations of nuclei with A≤7, Phys. Rev. C 56(4), 1720 (1997)
CrossRef ADS Google scholar
[39]
E. Hiyama, B. F. Gibson and M. Kamimura, Fourbody calculation of the first excited state of 4He using a realistic NN interaction: 4He (e, e′)4He (0+2 ) and the monopole sum rule, Phys. Rev. C 70, 031001(R) (2004)
[40]
W. Horiuchi and Y. Suzuki, Excited states and strength functions of 4He in correlated gaussians, Few-Body Syst. 54(12), 2407 (2013)
CrossRef ADS Google scholar
[41]
C. Caso, (Particle Data Group), Review of Particle Physics, Eur. Phys. J. C 3(1–4), 1 (1998)
[42]
Y. Kino, M. Kamimura, and H. Kudo, High-precision calculation of antiprotonic helium atomcules and antiproton mass, Few-Body Syst. Suppl. 12, 40 (2000)
[43]
Y. Kino, N. Yamanaka, M. Kamimura, P. Froelich, and H. Kudo, High-precision calculation of the energy levels and auger decay rates of the metastable states of the antiprotonic helium atoms, Hyperfine Interact. 138(1/4), 179 (2001)
CrossRef ADS Google scholar
[44]
E. Braaten and H. W. Hammer, Universality in fewbody systems with large scattering length, Phys. Rep. 428(5–6), 259 (2006)
CrossRef ADS Google scholar
[45]
R. A. Aziz and M. J. Slaman, An examination of ab initioresults for the helium potential energy curve, J. Chem. Phys. 94(12), 8047 (1991)
CrossRef ADS Google scholar
[46]
R. Lazauskas and J. Carbonell, Description of He4 tetramer bound and scattering states, Phys. Rev. A 73(6), 062717 (2006)
CrossRef ADS Google scholar
[47]
M. Hori, J. Eades, R. S. Hayano, T. Ishikawa, J. Sakaguchi, E. Widmann, H. Yamaguchi, H. A. Torii, B. Juhász, D. Horváth, and T. Yamazaki, Sub-ppm laser spectroscopy of antiprotonic helium and a CPTviolation limit on the antiprotonic charge and mass, Phys. Rev. Lett. 87, 093401 (2001)
CrossRef ADS Google scholar
[48]
K. Hagiwara, (Particle Data Group), Review of particle properties, Phys. Rev. D 66(1), 010001 (2002)
CrossRef ADS Google scholar
[49]
T. Motoba, H. Bando, and K. Ikeda, Light p-shellhypernuclei by the microscopic three-cluster model, Prog. Theor. Phys. 70(1), 189 (1983)
CrossRef ADS Google scholar
[50]
T. Motoba, H. Bando, K. Ikeda, and T. Yamada, Production, structure an decay of light p-shell L- hypernuclei, Prog. Theor. Phys. Suppl. 81, 42 (1985)
CrossRef ADS Google scholar
[51]
E. Hiyama, M. Kamimura, K. Miyazaki, and T. Motoba, γtransitions in A= 7 hypernuclei and a possible derivation of hypernuclear size, Phys. Rev. C 59(5), 2351 (1999)
CrossRef ADS Google scholar
[52]
E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, and Y. Yamamoto, Three-body model study of A= 6–7 hypernuclei: Halo and skin structures, Phys. Rev. C 53(5), 2075 (1996)
CrossRef ADS Google scholar
[53]
E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, and Y. Yamamoto, Three- and four-body structure of light hypernuclei, Nucl. Phys. A 684(1–4), 227 (2001)
CrossRef ADS Google scholar
[54]
K. Tanida, H. Tamura, D. Abe, H. Akikawa, K. Araki, , Measurement of the B(E2) of 6 ΛLi and shrinkage of the hypernuclear size, Phys. Rev. Lett. 86(10), 1982 (2001)
CrossRef ADS Google scholar
[55]
E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, and Y. Yamamoto, Three- and four-body cluster models of hypernuclei using the G-matrix N interaction: 9Be, 13C, 6He and 10Be, Prog. Theor. Phys. 97(6), 881 (1997)
CrossRef ADS Google scholar
[56]
E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, and Y. Yamamoto, LN spin-orbit splittings in 9ΛBe and 13ΛC studied with one-boson-exchange LNinteractions, Phys. Rev. Lett. 85(2), 270 (2000)
CrossRef ADS Google scholar
[57]
H. Akikawa, S. Ajimura, R. E. Chrien, P. M. Eugenio, G. B. Franklin, , Hypernuclear fine structure in 9ΛBe, Phys. Rev. Lett. 88(8), 082501 (2002)
CrossRef ADS Google scholar
[58]
S. Ajimura, H. Hayakawa, T. Kishimoto, H. Kohri, K. Matsuoka, , Observation of spin-orbit splitting in Lsingle-particle states, Phys. Rev. Lett. 86(19), 4255 (2001)
CrossRef ADS Google scholar
[59]
M. M. Nagels, T. A. Rijken, and J. J. deSwart, Baryonbaryon scattering in a one-boson-exchange-potential approach (I): Nucleon-nucleon scattering, Phys. Rev. D 12, 744 (1975)
CrossRef ADS Google scholar
[60]
M. M. Nagels, T. A. Rijken, and J. J. deSwart, Baryonbaryon scattering in a one-boson-exchange-potential approach (II): Hyperon-nucleon scattering, Phys. Rev. D 15, 2547 (1977)
CrossRef ADS Google scholar
[61]
M. M. Nagels, T. A. Rijken, and J. J. deSwart, Baryonbaryon scattering in a one-boson-exchange-potential approach (III): A nucleon-nucleon and hyperon-nucleon analysis including contributions of a nonet of scalar mesons, Phys. Rev. D 20, 1633 (1979)
CrossRef ADS Google scholar
[62]
T. A. Rijken, V. G. J. Stoks, and Y. Yamamoto, Softcore hyperon-nucleon potentials, Phys. Rev. C 59(1), 21 (1999)
CrossRef ADS Google scholar
[63]
O. Morimatsu, S. Ohta, K. Shimizu, and K. Yazaki, Baryon-baryon spin-orbit interaction in a quark model, Nucl. Phys. A 420(3), 573 (1984)
CrossRef ADS Google scholar
[64]
Y. Fujiwara, C. Nakamoto, and Y. Suzuki, Unified description of NNand YNinteractions in a quark model with effective meson-exchange potentials, Phys. Rev. Lett. 76(13), 2242 (1996)
CrossRef ADS Google scholar
[65]
E. Hiyama, Y. Yamamoto, T. Motoba, and M. Kamimura, Structure of A= 7 iso-triplet Λ hypernuclei studied with the four-body cluster model, Phys. Rev. C 80(5), 054321 (2009)
CrossRef ADS Google scholar
[66]
S. N. Nakamura, A. Matsumura, Y. Okayasu, T. Seva, V. M. Rodriguez, , Observation of the 7ΛHe hypernucleus by the (e, e′ K+) reaction, Phys. Rev. Lett. 110(1), 012502 (2013)
CrossRef ADS Google scholar
[67]
T. Gogami, DissertationTip, Tohoku University, 2014
[68]
E. Hiyama, M. Isaka, M. Kamimura, T. Myo, and T. Motoba, Resonant states of the neutron-rich Λ hypernucleus 7ΛHe, Phys. Rev. C 91(5), 054316 (2015)
CrossRef ADS Google scholar
[69]
J. K. Ahn, , in: Hadron and Nuclei, AIP Conf. Proc. No. 594, Ed. II-Tong Cheon, , AIP, Meville, NY, 2001, page 180
[70]
A. Ichikawa, DissertationTip, Kyoto University, 2001
[71]
K. Nakazawa, , Double-Λ hypernuclei via the Ξ hyperon capture at rest reaction in a hybrid emulsion, Nucl. Phys. A 835(1–4), 207 (2010) (The proceedings on the 10th International Conference on Hypernuclear and Strange Particle Physics (Hyp X), Tokai, Sept. 14–18, 2009)
[72]
J. K. Ahn, H. Akikawa, S. Aoki, K. Arai, S. Y. Bahk, , Double-Λ hypernuclei observed in a hybrid emulsion experiment, Phys. Rev. C 88(1), 014003 (2013)
CrossRef ADS Google scholar
[73]
E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, and Y. Yamamoto, Four-body cluster structure of A= 7– 10 double-Λ hypernuclei, Phys. Rev. C 66(2), 024007 (2002)
CrossRef ADS Google scholar
[74]
E. Hiyama, M. Kamimura, Y. Yamamoto, and T. Motoba, Five-body cluster structure of the double-Λ hypernucleus 11ΛΛBe, Phys. Rev. Lett. 104(21), 212502 (2010)
CrossRef ADS Google scholar
[75]
E. Hiyama and T. Yamada, Structure of light hypernuclei, Prog. Part. Nucl. Phys. 63(2), 339 (2009)
CrossRef ADS Google scholar
[76]
E. Hiyama, M. Kamimura, Y. Yamamoto, T. Motoba, and T. A. Rijken, S=–1 hypernuclear structure, Prog. Theor. Phys. Suppl. 185, 106 (2010)
CrossRef ADS Google scholar
[77]
E. Hiyama, M. Kamimura, Y. Yamamoto, T. Motoba, and T. A. Rijken, S= –2 hypernuclear structure, Prog. Theor. Phys. Suppl. 185, 152 (2010)
CrossRef ADS Google scholar
[78]
J. Aguilar and J. M. Combes, A class of analytic perturbations for one-body Schrödinger Hamiltonians, Commun. Math. Phys. 22(4), 269 (1971)
CrossRef ADS Google scholar
[79]
E. Balslev and J. M. Combes, Spectral properties of many-body Schrödinger operators with dilatationanalytic interactions, Commun. Math. Phys. 22(4), 280 (1971)
CrossRef ADS Google scholar
[80]
B. Simon, Quadratic form techniques and the Balslev– Combes theorem, Commun. Math. Phys. 27(1), 1 (1972)
CrossRef ADS Google scholar
[81]
Y. K. Ho, The method of complex coordinate rotation and its applications to atomic collision processes, Phys. Rep. 99(1), 1 (1983)
CrossRef ADS Google scholar
[82]
N. Moiseyev, Quantum theory of resonances: Calculating energies, widths and cross-sections by complex scaling, Phys. Rep. 302(5–6), 212 (1998)
CrossRef ADS Google scholar
[83]
E. Hiyama, R. Lazauskas, J. Carbonell, and M. Kamimura, Possibility of generating a 4-neutron resonance with a T= 3/2 isospin 3-neutron force, Phys. Rev. C 93(4), 044004 (2016)
CrossRef ADS Google scholar
[84]
K. Kisamori, S. Shimoura, H. Miya, S. Michimasa, S. Ota, , Candidate resonant tetraneutron state populated by the 4He (8He, 8Be) reaction, Phys. Rev. Lett. 116(5), 052501 (2016)
CrossRef ADS Google scholar
[85]
C. Kurokawa and K. Katō, New broad 0+ state in 12C, Phys. Rev. C 71, 021301(R) (2005)
[86]
M. Kusakabe, G. J. Mathews, T. Kajino, and M. K. Cheoun, Review on effects of long-lived negatively charged massive particles on Big Bang Nucleosynthesis, Int. J. Mod. Phys. E 26(08), 1741004 (2017)
CrossRef ADS Google scholar
[87]
F. Iocco, G. Mangano, G. Miele, O. Pisanti, and P. D. Serpico, Primordial nucleosynthesis: From precision cosmology to fundamental physics, Phys. Rep. 472(1–6), 1 (2009)
CrossRef ADS Google scholar
[88]
M. Kamimura, Non-adiabatic coupled-rearrangementchannels approach to muonic molecules and muon transfer reactions, Muon Catal. Fusion 3, 335 (1988)
[89]
Y. Kino and M. Kamimura, Non-adiabatic calculation of muonic atom-nucleus collisions, Hyperfine Interactions 82(1–4), 45 (1993)
CrossRef ADS Google scholar
[90]
J. S. Cohen and M. C. Struensee, Improved adiabatic calculation of muonic-hydrogen-atom cross sections (I): Isotopic exchange and elastic scattering in asymmetric collisions, Phys. Rev. A 43, 3460 (1991)
CrossRef ADS Google scholar
[91]
C. Chiccoli, V. I. Korobov, V. S. Melezhik, P. Pasini, L. I. Ponomarev, and J. Wozniak, The atlas of the cross sections of mesic atomic processes (III): The process pμ+(d, t), dμ+(p, t) and tμ+(p, d), Muon Catal. Fusion 7, 87 (1992)
[92]
O. I. Tolstikhin, and C. Namba, Hyperspherical calculations of low-energy rearrangement processes in dtμ, Phys. Rev. A 60(6), 5111 (1999)
CrossRef ADS Google scholar
[93]
K. Hamaguchi, T. Hatsuda, M. Kamimura, Y. Kino, and T. T. Yanagida, Stau-catalyzed 6Li production in big-bang nucleosynthesis, Phys. Lett. B 650(4), 268 (2007)
CrossRef ADS Google scholar
[94]
M. Kubo, J. Sato, T. Shimomura, Y. Takanishi, and M. Yamanaka, Big-bang nucleosynthesis and leptogenesis in the CMSSM, Phys. Rev. D 97(11), 115013 (2018)
CrossRef ADS Google scholar
[95]
M. Kusakabe, K. S. Kim, M. K. Cheoun, T. Kajino, and Y. Kino, 7Be charge exchange between 7Be3+ ion and an exotic long-lived negatively charged massive particle in big bang nucleosynthesis, Phys. Rev. D 88(6), 063514 (2013)
CrossRef ADS Google scholar
[96]
S. Bailly, K. Jedamzik, and G. Moultaka, Gravitino dark matter and the cosmic lithium abundances, Phys. Rev. D 80(6), 063509 (2009)
CrossRef ADS Google scholar
[97]
E. Hiyama, M. Kamimura, A. Hosaka, H. Toki, and M. Yahiro, Five-body calculation of resonance and scattering states of pentaquark system, Phys. Lett. B 633(2–3), 237 (2006)
CrossRef ADS Google scholar
[98]
T. Nakano, . (LEPS Collaboration), Evidence for a narrow S= +1 baryon resonance in photoproduction from the neutron, Phys. Rev. Lett. 91(1), 012002 (2003)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(5120 KB)

Accesses

Citations

Detail

Sections
Recommended

/