Enhancing the magnetoelectric coupling of Co4Nb2O9[100] by substituting Mg for Co

Zhen Li, Yi-Ming Cao, Yin Wang, Ya Yang, Mao-Lin Xiang, You-Shuang Yu, Bao-Juan Kang, Jin-Cang Zhang, Shi-Xun Cao

PDF(2267 KB)
PDF(2267 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (5) : 137503. DOI: 10.1007/s11467-018-0827-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Enhancing the magnetoelectric coupling of Co4Nb2O9[100] by substituting Mg for Co

Author information +
History +

Abstract

We report experimental studies on enhancing the magnetoelectric (ME) coupling of Co4Nb2O9 by substituting the non-magnetic metal Mg for Co. A series of single crystal Co4−xMgxNb2O9 (x = 0, 1, 2, 3) with a single-phase corundum-type structure are synthesized using the optical floating zone method, and the good quality and crystallographic orientations of the synthesized samples are confirmed by the Laue spots and sharp XRD peaks. Although the Néel temperatures (TN) of the Mg substituted crystals decrease slightly from 27 K for pure Co4Nb2O9 to 19 K and 11 K for Co3MgNb2O9 and Co2Mg2Nb2O9, respectively, the ME coupling is doubly enhanced by Mg substitution when x = 1. The ME coefficient αME of Co3MgNb2O9 required for the magnetic field (electric field) control of electric polarization (magnetization) is measured to be 12.8 ps/m (13.7 ps/m). These results indicate that the Mg substituted Co4−xMgxNb2O9 (x = 1) could serve as a potential candidate material for applications in future logic spintronics and logic devices.

Keywords

single crystal / magnetoelectric coupling / substitution

Cite this article

Download citation ▾
Zhen Li, Yi-Ming Cao, Yin Wang, Ya Yang, Mao-Lin Xiang, You-Shuang Yu, Bao-Juan Kang, Jin-Cang Zhang, Shi-Xun Cao. Enhancing the magnetoelectric coupling of Co4Nb2O9[100] by substituting Mg for Co. Front. Phys., 2018, 13(5): 137503 https://doi.org/10.1007/s11467-018-0827-6

References

[1]
S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. V. Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Spintronics: A spin-based electronics vision for the future, Science 294(5546), 1488 (2001)
CrossRef ADS Google scholar
[2]
A. Rycerz, J. Tworzydło, and C. W. J. Beenakker, Valley filter and valley valve in graphene, Nat. Phys. 3(3), 172 (2007)
[3]
W. Eerenstein, N. D. Mathur, and J. F. Scott, Multiferroic and magnetoelectric materials, Nature 442(7104), 759 (2006)
CrossRef ADS Google scholar
[4]
T. H. O′Dell, The electrodynamics of magneto-electric media, Philos. Mag. 7(82), 1653 (1970)
[5]
F. Manfred, Revival of the magnetoelectric effect, J. Cheminform. 36(33), R123 (2015)
[6]
S. W. Cheong and M. Mostovoy, Multiferroics: a magnetic twist for ferroelectricity, Nat. Mater. 6(1), 13 (2007)
CrossRef ADS Google scholar
[7]
M. Tokunaga, Studies on multiferroic materials in high magnetic fields, Front. Phys. 7(4), 386 (2012)
CrossRef ADS Google scholar
[8]
Y. Kitagawa, Y. Hiraoka, T. Honda, T. Ishikura, H. Nakamura, and T. Kimura, Low-field magnetoelectric effect at room temperature, Nat. Mater. 9(10), 797 (2010)
CrossRef ADS Google scholar
[9]
S. Zhang, J. M. Dong, and J. M. Liu, Ferroelectricity generated by spin-orbit and spin-lattice couplings in multiferroic DyMnO3, Front. Phys. 7(4), 408 (2012)
CrossRef ADS Google scholar
[10]
G. Zhang, S. Dong, Z. Yan, Y. Guo, Q. Zhang, S. Yunoki, E. Dagotto, and J. M. Liu, Multiferroic Properties of CaMn7O12, Phys. Rev. B 84(17), 174413 (2011)
CrossRef ADS Google scholar
[11]
T. Kimura, Y. Sekio, H. Nakamura, T. Siegrist, and A. P. Ramirez, Cupric oxide as an induced-multiferroic with high-Tc, Nat. Mater. 7(4), 291 (2008)
CrossRef ADS Google scholar
[12]
Y. Tokunaga, N. Furukawa, H. Sakai, Y. Taguchi, T. H. Arima, and Y. Tokura, Composite domain walls in a multiferroic perovskite ferrite, Nat. Mater. 8(7), 558 (2009)
CrossRef ADS Google scholar
[13]
Y. Yamaguchi, T. Nakano, Y. Nozue, and T. Kimura, Magnetoelectric effect in an XY-like spin glass system NixMn1−xTiO3, Phys. Rev. Lett. 108(5), 057203 (2012)
CrossRef ADS Google scholar
[14]
E. F. Bertaut, L. Corliss, F. Forrat, R. Aleonard, and R. Pauthenet, Etude de niobates et tantalates de metaux de transition bivalents, J. Phys. Chem. Solids 21(3–4), 234 (1961)
CrossRef ADS Google scholar
[15]
E. Fischer, G. Gorodetsky, and R. M. Hornreich, A new family of magnetoelectric materials, A2M4O9 (A= Ta, Nb; M= Mn, Co), Solid State Commun. 10(12), 1127 (1972)
CrossRef ADS Google scholar
[16]
Y. Fang, S. Yan, L. Zhang, Z. Han, B. Qian, D. Wang, Y. Du, and B. Raveau, Magnetic-field-induced dielectric anomaly and electric polarization in Co4Ta2O9, J. Am. Ceram. Soc. 98(7), 2005 (2015)
CrossRef ADS Google scholar
[17]
Y. Fang, W. P. Zhou, S. M. Yan, R. Bai, Z. H. Qian, Q. Y. Xu, D. H. Wang, and Y. W. Du, Magnetic-fieldinduced dielectric anomaly and electric polarization in Mn4Nb2O9, J. Appl. Phys. 117, 17B712 (2015)
[18]
B. B. Liu, Y. Fang, Z. D. Han, S. M. Yan, W. P. Zhou, B. Qian, D. H. Wang, and Y. W. Du, Magnetodielectric and magnetoelectric effect in Mn4Ta2O9, Mater. Lett. 164, 425 (2016)
CrossRef ADS Google scholar
[19]
Y. Cao, M. Xiang, Z. J. Feng, B. J. Kang, J. C. Zhang, N. Guiblin, and S. X. Cao, Single crystal growth of Mn4Nb2O9 and its structure-magnetic coupling, Rsc Adv 7(23), 13846 (2017)
CrossRef ADS Google scholar
[20]
Y. Fang, Y. Q. Song, W. P. Zhou, R. Zhao, R. J. Tang, H. Yang, L. Y. Lv, S. G. Yang, D. H. Wang, and Y. W. Du, Large magnetoelectric coupling in Co4Nb2O9, Sci. Rep. 4(1), 3860 (2015)
CrossRef ADS Google scholar
[21]
L. H. Yin, Y. M. Zou, J. Yang, J. M. Dai, W. H. Song, X. B. Zhu, and Y. P. Sun, Colossal magnetodielectric effect and spin flop in magnetoelectric Co4Nb2O9 crystal, Appl. Phys. Lett. 109(3), 032905 (2016)
CrossRef ADS Google scholar
[22]
N. D. Khanh, N. Abe, H. Sagayama, A. Nakao, T. Hanashima, R. Kiyanagi, Y. Tokunaga, and T. Arima, Magnetoelectric coupling in the honeycomb antiferromagnet Co4Nb2O9, Phys. Rev. B 93(7), 075117 (2016)
CrossRef ADS Google scholar
[23]
Y. Cao, G. C. Deng, P. Beran, Z. Feng, B. J. Kang, J. C. Zhang, N. Guiblin, B. Dkhil, W. Ren, and S. X. Cao, Nonlinear magnetoelectric effect in paraelectric state of Co4Nb2O9 single crystal, Sci. Rep. 7(1), 14079 (2017)
CrossRef ADS Google scholar
[24]
C. Dhanasekhar, S. K. Mishra, R. Rawat, A. K. Das, and A. Venimadhav, Coexistence of weak ferromagnetism with magnetoelectric coupling in Fe substituted Co4Nb2O9, J. Alloys Compd. 726, 148 (2017)
CrossRef ADS Google scholar
[25]
G. C. Deng, Y. M. Cao, W. Ren, S. X. Cao, A. J. Studer, N. Gauthier, M. Kenzelmann, G. Davidson, K. C. Rule, J. S. Gardner, P. Imperia, C. Ulrich, and G. J. McIntyre, Spin dynamics and magnetoelectric coupling mechanism of Co4Nb2O9, Phys. Rev. B 97(8), 085154 (2018)
CrossRef ADS Google scholar
[26]
H. M. Rietveld, Line profiles of neutron powderdiffraction peaks for structure refinement, Acta Crystallogr. A 22(1), 151 (1967)
CrossRef ADS Google scholar
[27]
J. Rodríguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction, Physica B 192(1–2), 55 (1993)
CrossRef ADS Google scholar
[28]
The lattice constants of CMNO with different Mg concentrations at room temperature are measured to be a= b= 5.1667(4), 5.1678(4), and 5.1663(9) Å, c= 14.0853(9), 14.0967(9), and 14.0568(5) Å for x= 1, 2, and 3, respectively.
[29]
Private communications.
[30]
Y. M. Cao, Y. Yang, M. L. Xiang, Z. Feng, B. J. Kang, J. C. Zhang, W. Ren, and S. X. Cao, High-quality single crystal growth and spin flop of multiferroic Co4Nb2O9, J. Cryst. Growth 420, 90 (2015)
CrossRef ADS Google scholar
[31]
A. Iyama and T. Kimura, Magnetoelectric hysteresis loops in Cr2O3 at room temperature, Phys. Rev. B 87(18), 180408 (2013)
CrossRef ADS Google scholar
[32]
N. Mufti, G. R. Blake, M. Mostovoy, S. Riyadi, A. A. Nugroho, and T. T. M. Palstra, Magnetoelectric coupling in MnTiO3, Phys. Rev. B 83(10), 104416 (2011)
CrossRef ADS Google scholar
[33]
J. Hwang, E. S. Choi, H. D. Zhou, J. Lu, and P. Schlottmann, Magnetoelectric effect in NdCrTiO5, Phys. Rev. B 85(2), 024415 (2012)
CrossRef ADS Google scholar
[34]
J. N. Zhuang, Y. Wang, Y. Zhou, J. Wang, and H. Guo, Impurity-limited quantum transport variability in magnetic tunnel junctions, Front. Phys. 12(4), 127304 (2017)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(2267 KB)

Accesses

Citations

Detail

Sections
Recommended

/