Engineering multipartite steady entanglement of distant atoms via dissipation

Zhao Jin, S.-L. Su, Ai-Dong Zhu, Hong-Fu Wang, Shou Zhang

PDF(2432 KB)
PDF(2432 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (5) : 134209. DOI: 10.1007/s11467-018-0826-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Engineering multipartite steady entanglement of distant atoms via dissipation

Author information +
History +

Abstract

We propose a scheme for generating an entangled state for three atoms trapped in separate optical cavities that are coupled to each other through two optical fibers based on coherent driving and dissipation, which are induced by the classical fields and the decay of non-local bosonic modes, respectively. In our scheme, the interaction time need not be controlled strictly in the overall dynamics process, and the cavity field decay can be changed into a vital resource. The numerical simulation shows that the fidelity of the target state is insensitive to atomic spontaneous emission, and our scheme is good enough to generate the W state of distant atoms with a high fidelity and purity. In addition, the present scheme can also be generalized to prepare the N-partite W state of distant atoms.

Keywords

steady-state entanglement / dissipative dynamics / laser manipulation

Cite this article

Download citation ▾
Zhao Jin, S.-L. Su, Ai-Dong Zhu, Hong-Fu Wang, Shou Zhang. Engineering multipartite steady entanglement of distant atoms via dissipation. Front. Phys., 2018, 13(5): 134209 https://doi.org/10.1007/s11467-018-0826-7

References

[1]
A. Einstein, B. Podolsky, and N. Rosen, Can quantummechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935)
CrossRef ADS Google scholar
[2]
D. Bohm, Quantum Theory, Prentice-Hall, Englewood Cliffs, NJ, 1951
[3]
J. I. Cirac and P. Zoller, Quantum computations with cold trapped ions, Phys. Rev. Lett. 74(20), 4091 (1995)
CrossRef ADS Google scholar
[4]
I. E. Protsenko, G. Reymond, N. Schlosser, and P. Grangier, Conditional quantum logic using two atomic qubits, Phys. Rev. A 66(6), 062306 (2002)
CrossRef ADS Google scholar
[5]
N. A. Gershenfeld and I. L. Chuang, Bulk spinresonance quantum computation, Science 275(5298), 350 (1997)
CrossRef ADS Google scholar
[6]
P. Domokos, J. M. Raimond, M. Brune, and S. Haroche, Simple cavity-QED two-bit universal quantum logic gate: The principle and expected performances, Phys. Rev. A 52(5), 3554 (1995)
CrossRef ADS Google scholar
[7]
Y. Makhlin, G. Schön, and A. Shnirman, Quantumstate engineering with Josephson-junction devices, Rev. Mod. Phys. 73(2), 357 (2001)
CrossRef ADS Google scholar
[8]
D. Loss and D. P. DiVincenzo, Quantum computation with quantum dots, Phys. Rev. A 57(1), 120 (1998)
CrossRef ADS Google scholar
[9]
N. D. Mermin, Extreme quantum entanglement in a superposition of macroscopically distinct states, Phys. Rev. Lett. 65(15), 1838 (1990)
CrossRef ADS Google scholar
[10]
D. Collins, N. Gisin, S. Popescu, D. Roberts, and V. Scarani, Bell-type inequalities to detect true n-body nonseparability, Phys. Rev. Lett. 88(17), 170405 (2002)
CrossRef ADS Google scholar
[11]
M. D. Reid, Q. Y. He, and P. D. Drummond, Entanglement and nonlocality in multi-particle systems, Front. Phys. 7(1), 72 (2012)
CrossRef ADS Google scholar
[12]
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 2000
[13]
A. Karlsson and M. Bourennane, Quantum teleportation using three-particle entanglement, Phys. Rev. A 58(6), 4394 (1998)
CrossRef ADS Google scholar
[14]
P. Y. Xiong, X. T. Yu, H. T. Zhan, and Z. C. Zhang, Multiple teleportation via partially entangled GHZ state, Front. Phys. 11(4), 110303 (2016)
CrossRef ADS Google scholar
[15]
M. D. G. Ramírez, B. J. Falaye, G. H. Sun, M. Cruz-Irisson, and S. H. Dong, Quantum teleportation and information splitting via four-qubit cluster state and a Bell state, Front. Phys. 12(5), 120306 (2017)
CrossRef ADS Google scholar
[16]
R. Cleve, D. Gottesman, and H. K. Lo, How to share a quantum secret, Phys. Rev. Lett. 83(3), 648 (1999)
CrossRef ADS Google scholar
[17]
M. Hillery, V. Bužek, and A. Berthiaume, Quantum secret sharing, Phys. Rev. A 59(3), 1829 (1999)
CrossRef ADS Google scholar
[18]
D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, Bell’s theorem without inequalities, Am. J. Phys. 58(12), 1131 (1990)
CrossRef ADS Google scholar
[19]
W. Dür, G. Vidal, and J. I. Cirac, Three qubits can be entangled in two inequivalent ways, Phys. Rev. A 62(6), 062314 (2000)
CrossRef ADS Google scholar
[20]
A. Cabello, Two qubits of a W state violate Bell’s inequality beyond Cirel’son’s bound, Rev. Rev. A 66(4), 042114 (2002)
CrossRef ADS Google scholar
[21]
S. L. Su, Y. Z. Tian, H. Z. Shen, H. P. Zang, E. J. Liang, and S. Zhang, Applications of the modified Rydberg antiblockade regime with simultaneous driving, Phys. Rev. A 96(4), 042335 (2017)
CrossRef ADS Google scholar
[22]
S. L. Su, Y. Gao, E. J. Liang, and S. Zhang, Fast Rydberg antiblockade regime and its applications in quantum logic gates, Phys. Rev. A 95(2), 022319 (2017)
CrossRef ADS Google scholar
[23]
S. L. Su, E. J. Liang, S. Zhang, J. J. Wen, L. L. Sun, Z. Jin, and A. D. Zhu, One-step implementation of the Rydberg–Rydberg-interaction gate, Phys. Rev. A 93(1), 012306 (2016)
CrossRef ADS Google scholar
[24]
M. B. Plenio, S. F. Huelga, A. Beige, and P. L. Knight, Cavity-loss-induced generation of entangled atoms, Phys. Rev. A 59(3), 2468 (1999)
CrossRef ADS Google scholar
[25]
S. Clark, A. Peng, M. Gu, and S. Parkins, unconditional preparation of entanglement between atoms in cascaded optical cavities, Phys. Rev. Lett. 91(17), 177901 (2003)
CrossRef ADS Google scholar
[26]
J. Busch, S. De, S. S. Ivanov, B. T. Torosov, T. P. Spiller, and A. Beige, Cooling atom-cavity systems into entangled states, Phys. Rev. A 84(2), 022316 (2011)
CrossRef ADS Google scholar
[27]
M. J. Kastoryano, F. Reiter, and A. S. Sørensen, Dissipative preparation of entanglement in optical cavities, Phys. Rev. Lett. 106(9), 090502 (2011)
CrossRef ADS Google scholar
[28]
F. Reiter, M. J. Kastoryano, and A. S. Sørensen, Driving two atoms in an optical cavity into an entangled steady state using engineered decay, New J. Phys. 14(5), 053022 (2012)
CrossRef ADS Google scholar
[29]
L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, Steady-state entanglement for distant atoms by dissipation in coupled cavities, Phys. Rev. A 84(6), 064302 (2011)
CrossRef ADS Google scholar
[30]
L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, Distributed entanglement induced by dissipative bosonic media, Europhys. Lett. 99(2), 20003 (2012)
CrossRef ADS Google scholar
[31]
L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, Cooling distant atoms into steady entanglement via coupled cavities, Quantum Inf. Comput. 13, 281 (2013)
[32]
L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, Preparation of two-qubit steady entanglement through driving a single qubit, Opt. Lett. 39(20), 6046 (2014)
CrossRef ADS Google scholar
[33]
S. L. Su, X. Q. Shao, H. F. Wang, and S. Zhang, Scheme for entanglement generation in an atom-cavity system via dissipation, Phys. Rev. A 90(5), 054302 (2014)
CrossRef ADS Google scholar
[34]
S. L. Su, Q. Guo, H. F. Wang, and S. Zhang, Simplified scheme for entanglement preparation with Rydberg pumping via dissipation, Phys. Rev. A 92(2), 022328 (2015)
CrossRef ADS Google scholar
[35]
S. B. Zheng and L. T. Shen, Generation and stabilization of maximal entanglement between two atomic qubits coupled to a decaying resonator, J. Phys. At. Mol. Opt. Phys. 47(5), 055502 (2014)
CrossRef ADS Google scholar
[36]
X. Q. Shao, T. Y. Zheng, C. H. Oh, and S. Zhang, Dissipative creation of three-dimensional entangled state in optical cavity via spontaneous emission, Phys. Rev. A 89(1), 012319 (2014)
CrossRef ADS Google scholar
[37]
X. Q. Shao, J. B. You, T. Y. Zheng, C. H. Oh, and S. Zhang, Stationary three-dimensional entanglement via dissipative Rydberg pumping, Phys. Rev. A 89(5), 052313 (2014)
CrossRef ADS Google scholar
[38]
J. Song, X. D. Sun, Q. X. Mu, L. L. Zhang, Y. Xia, and H. S. Song, Direct conversion of a four-atom Wstate to a Greenberger–Horne–Zeilinger state via a dissipative process, Phys. Rev. A 88(2), 024305 (2013)
CrossRef ADS Google scholar
[39]
P. B. Li, S. Y. Gao, H. R. Li, S. L. Ma, and F. L. Li, Dissipative preparation of entangled states between two spatially separated nitrogen-vacancy centers, Phys. Rev. A 85(4), 042306 (2012)
CrossRef ADS Google scholar
[40]
C. Li, S. Yang, J. Song, Y. Xia, and W. Q. Ding, Generation of long-living entanglement between two distant three-level atoms in non-Markovian environments, Opt. Express 25(10), 10961 (2017)
CrossRef ADS Google scholar
[41]
S. L. Ma, Z. Y. Liao, F. L. Li, and M. S. Zubairy, Dissipative production of controllable steady-state entanglement of two superconducting qubits in separated resonators, Europhys. Lett. 110(4), 40004 (2015)
CrossRef ADS Google scholar
[42]
A. S. Parkins, E. Solano, and J. I. Cirac, Unconditional two-mode squeezing of separated atomic ensembles, Phys. Rev. Lett. 96(5), 053602 (2006)
CrossRef ADS Google scholar
[43]
C. A. Muschik, E. S. Polzik, and J. I. Cirac, Dissipatively driven entanglement of two macroscopic atomic ensembles, Phys. Rev. A 83(5), 052312 (2011)
CrossRef ADS Google scholar
[44]
E. G. Dalla Torre, J. Otterbach, E. Demler, V. Vuletic, and M. D. Lukin, Dissipative preparation of spin squeezed atomic ensembles in a steady state, Phys. Rev. Lett. 110(12), 120402 (2013)
CrossRef ADS Google scholar
[45]
J. F. Poyatos, J. I. Cirac, and P. Zoller, Quantum reservoir engineering with laser cooled trapped ions, Phys. Rev. Lett. 77(23), 4728 (1996)
CrossRef ADS Google scholar
[46]
J. Cho, S. Bose, and M. S. Kim, Optical pumping into manybody entanglement, Phys. Rev. Lett. 106(2), 020504 (2011)
CrossRef ADS Google scholar
[47]
J. T. Barreiro, M. Muller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, M. Hennrich, C. F. Roos, P. Zoller, and R. Blatt, An open-system quantum simulator with trapped ions, Nature 470(7335), 486 (2011)
CrossRef ADS Google scholar
[48]
A. Gonzalez-Tudela, D. Martín-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, Entanglement of two qubits mediated by one-dimensional plasmonic waveguides, Phys. Rev. Lett. 106(2), 020501 (2011)
CrossRef ADS Google scholar
[49]
M. Gullans, T. G. Tiecke, D. E. Chang, J. Feist, J. D. Thompson, J. I. Cirac, P. Zoller, and M. D. Lukin, Nanoplasmonic lattices for ultracold atoms, Phys. Rev. Lett. 109(23), 235309 (2012)
CrossRef ADS Google scholar
[50]
A. González-Tudela and D. Porras, Mesoscopic entanglement induced by spontaneous emission in solid-state quantum optics, Phys. Rev. Lett. 110(8), 080502 (2013)
CrossRef ADS Google scholar
[51]
S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchler, and P. Zoller, Quantum states and phases in driven open quantum systems with cold atoms, Nat. Phys. 4(11), 878 (2008)
[52]
M. Foss-Feig, A. J. Daley, J. K. Thompson, and A. M. Rey, Steady-state many-body entanglement of hot reactive fermions, Phys. Rev. Lett. 109(23), 230501 (2012)
CrossRef ADS Google scholar
[53]
D. X. Li, X. Q. Shao, J. H. Wu, and X. X. Yi, Dissipation-induced W state in a Rydberg-atom-cavity system, Opt. Lett. 43(8), 1639 (2018)
CrossRef ADS Google scholar
[54]
F. Reiter, D. Reeb, and A. S. Sørensen, Scalable dissipative preparation of many-body entanglement, Phys. Rev. Lett. 117(4), 040501 (2016)
CrossRef ADS Google scholar
[55]
X. Q. Shao, J. H. Wu, X. X. Yi, and G. L. Long, Dissipative preparation of steady Greenberger–Horne–Zeilinger states for Rydberg atoms with quantum Zeno dynamics, Phys. Rev. A 96(6), 062315 (2017)
CrossRef ADS Google scholar
[56]
G. D. de Moraes Neto, V. F. Teizen, V. Montenegro, and E. Vernek, Steady many-body entanglements in dissipative systems, Phys. Rev. A 96(6), 062313 (2017)
CrossRef ADS Google scholar
[57]
J. Song, C. Li, Z. J. Zhang, Y. Y. Jiang, and Y. Xia, Implementing stabilizer codes in noisy environments? Phys. Rev. A 96(3), 032336 (2017)
CrossRef ADS Google scholar
[58]
I. Cohen and K. Mølmer, Deterministic quantum network for distributed entanglement and quantum computation, arXiv: 1802.08124 (2018)
[59]
J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, Quantum state transfer and entanglement distribution among distant nodes in a quantum network, Phys. Rev. Lett. 78(16), 3221 (1997)
CrossRef ADS Google scholar
[60]
T. Pellizzari, Quantum networking with optical fibres, Phys. Rev. Lett. 79(26), 5242 (1997)
CrossRef ADS Google scholar
[61]
G. W. Lin, X. B. Zou, X. M. Lin, and G. C. Guo, Scalable, high-speed one-way quantum computer in coupledcavity arrays, Appl. Phys. Lett. 95(22), 224102 (2009)
CrossRef ADS Google scholar
[62]
K. Zhang and Z. Y. Li, Transfer behavior of quantum states between atoms in photonic crystal coupled cavities, Phys. Rev. A 81(3), 033843 (2010)
CrossRef ADS Google scholar
[63]
M. Notomi, E. Kuramochi, and T. Tanabe, Large-scale arrays of ultrahigh-Qcoupled nanocavities, Nat. Photonics 2(12), 741 (2008)
CrossRef ADS Google scholar
[64]
S. B. Zheng, Generation of Greenberger–Horne– Zeilinger states for multiple atoms trapped in separated cavities, Eur. Phys. J. D 54(3), 719 (2009)
CrossRef ADS Google scholar
[65]
S. B. Zheng, C. P. Yang, and F. Nori, Arbitrary control of coherent dynamics for distant qubits in a quantum network, Phys. Rev. A 82(4), 042327 (2010)
CrossRef ADS Google scholar
[66]
H. F. Wang, A. D. Zhu, and S. Zhang, One-step implementation of a multiqubit phase gate with one control qubit and multiple target qubits in coupled cavities, Opt. Lett. 39(6), 1489 (2014)
CrossRef ADS Google scholar
[67]
X. Q. Shao, Z. H. Wang, H. D. Liu, and X. X. Yi, Dissipative preparation of a tripartite singlet state in coupled arrays of cavities via quantum feedback control, Phys. Rev. A 94(3), 032307 (2016)
CrossRef ADS Google scholar
[68]
M. J. Hartmann, F. G. S. L. Brandão, and M. B. Plenio, Strongly interacting polaritons in coupled arrays of cavities, Nat. Phys. 2(12), 849 (2006)
[69]
D. Daems and S. Guérin, Adiabatic quantum search scheme with atoms in a cavity driven by lasers, Phys. Rev. Lett. 99(17), 170503 (2007)
CrossRef ADS Google scholar
[70]
S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics, Phys. Rev. Lett. 91(4), 043902 (2003)
CrossRef ADS Google scholar
[71]
P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, Integration of fiber-coupled high-Q SiNx microdisks with atom chips, Appl. Phys. Lett. 89(13), 131108 (2006)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(2432 KB)

Accesses

Citations

Detail

Sections
Recommended

/