Degradation of Grover’s search under collective phase flips in queries to the oracle

Alexey E. Rastegin

PDF(323 KB)
PDF(323 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (5) : 130318. DOI: 10.1007/s11467-018-0825-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Degradation of Grover’s search under collective phase flips in queries to the oracle

Author information +
History +

Abstract

We address the case in which querying the oracle in Grover’s algorithm is exposed to noise including phase distortions. The oracle-box wires can be altered by an opposing party that tries to prevent reception of correct data from the oracle. This situation reflects an experienced truth that any access to prophetic knowledge cannot be common and direct. To study this problem, we introduce a simple model of collective phase distortions on the basis of a phase-damping channel. In the model, the probability of success is not altered via the oracle-box wires per se. Phase distortions of the considered type can hardly be detected via any one-time query to the oracle. However, the probability of success is significantly changed when such errors are introduced as an intermediate step in the Grover iteration. We investigate the probability of success with respect to variations of the parameter that characterizes the amount of phase errors. It turns out that the probability of success decreases significantly even if the error is not very high. Moreover, this probability quickly reduces to the value of one half, which corresponds to the completely mixed state. We also study trade-off relations between quantum coherence and the probability of success in the presence of noise of the considered type.

Keywords

Grover’s algorithm / phase noise / relative entropy of coherence

Cite this article

Download citation ▾
Alexey E. Rastegin. Degradation of Grover’s search under collective phase flips in queries to the oracle. Front. Phys., 2018, 13(5): 130318 https://doi.org/10.1007/s11467-018-0825-8

References

[1]
A. Galindo and M. A. Martin-Delgado, Information and computation: Classical and quantum aspects, Rev. Mod. Phys. 74(2), 347 (2002)
CrossRef ADS Google scholar
[2]
P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Comput. 26(5), 1484 (1997)
CrossRef ADS Google scholar
[3]
D. Haase and H. Maier, Quantum algorithms for number fields, Fortschr. Phys. 54(8–10), 866 (2006)
CrossRef ADS Google scholar
[4]
S. Hallgren, Polynomial-time quantum algorithms for Pell’s equation and the principal ideal problem, J. Assoc. Comput. Mach. 54(1), 1 (2007)
CrossRef ADS Google scholar
[5]
A. M. Childs and W. van Dam, Quantum algorithms for algebraic problems, Rev. Mod. Phys. 82(1), 1 (2010)
CrossRef ADS Google scholar
[6]
L. K. Grover, Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev. Lett. 79(2), 325 (1997)
CrossRef ADS Google scholar
[7]
L. K. Grover, Quantum computers can search arbitrarily large databases by a single query, Phys. Rev. Lett. 79(23), 4709 (1997)
CrossRef ADS Google scholar
[8]
L. K. Grover, Quantum computers can search rapidly by using almost any transformation, Phys. Rev. Lett. 80(19), 4329 (1998)
CrossRef ADS Google scholar
[9]
A. D. Patel and L. K. Grover, Quantum search, in: M.- Y. Kao (Ed.), Encyclopedia of Algorithms, New York: Springer, 2016, pp 1707–1716
CrossRef ADS Google scholar
[10]
S. J. Jr Lomonaco and L. H. Kauffman, Is Grover’s algorithm a quantum hidden subgroup algorithm? Quantum Inform. Process. 6(6), 461 (2007)
CrossRef ADS Google scholar
[11]
C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, Strengths and weaknesses of quantum computing, SIAM J. Comput. 26(5), 1510 (1997)
CrossRef ADS Google scholar
[12]
C. Zalka, Grover’s quantum searching algorithm is optimal, Phys. Rev. A 60(4), 2746 (1999)
CrossRef ADS Google scholar
[13]
E. Biham, O. Biham, D. Biron, M. Grassl, and D. A. Lidar, Grover’s quantum search algorithm for an arbitrary initial amplitude distribution, Phys. Rev. A 60(4), 2742 (1999)
CrossRef ADS Google scholar
[14]
A. Galindo and M. A. Martin-Delgado, Family of Grover’s quantum-searching algorithms, Phys. Rev. A 62(6), 062303 (2000)
CrossRef ADS Google scholar
[15]
E. Biham, O. Biham, D. Biron, M. Grassl, D. A. Lidar, and D. Shapira, Analysis of generalized Grover quantum search algorithms using recursion equations, Phys. Rev. A 63(1), 012310 (2000)
CrossRef ADS Google scholar
[16]
E. Biham and D. Kenigsberg, Grover’s quantum search algorithm for an arbitrary initial mixed state, Phys. Rev. A 66(6), 062301 (2002)
CrossRef ADS Google scholar
[17]
J. Watrous, The Theory of Quantum Information, Cambridge: Cambridge University Press, 2018
CrossRef ADS Google scholar
[18]
D. Deutsch, Quantum theory, the Church–Turing principle and the universal quantum computer, Proc. R. Soc. Lond. A 400(1818), 97 (1985)
[19]
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000
[20]
S. L. Braunstein and A. K. Pati, Speed-up and entanglement in quantum searching, Quantum Inf. Comput. 2, 399 (2002)
[21]
R. Jozsa and N. Linden, On the role of entanglement in quantum-computational speed-up, Proc. R. Soc. Lond. A 459(2036), 2011 (2003)
CrossRef ADS Google scholar
[22]
T. Baumgratz, M. Cramer, and M. B. Plenio, Quantifying coherence, Phys. Rev. Lett. 113(14), 140401 (2014)
CrossRef ADS Google scholar
[23]
A. Streltsov, G. Adesso, and M. B. Plenio, Quantum coherence as a resource, Rev. Mod. Phys. 89(4), 041003 (2017)
CrossRef ADS Google scholar
[24]
G. Adesso, T. R. Bromley, and M. Cianciaruso, Measures and applications of quantum correlations, J. Phys. A Math. Theor. 49(47), 473001 (2016)
CrossRef ADS Google scholar
[25]
M. L. Hu and H. Fan, Relative quantum coherence, incompatibility, and quantum correlations of states, Phys. Rev. A 95(5), 052106 (2017)
CrossRef ADS Google scholar
[26]
M. L. Hu, X. Hu, Y. Peng, Y. R. Zhang, and H. Fan, Quantum coherence and quantum correlations, arXiv: 1703.01852 [quant-ph] (2017)
[27]
V. Vedral, The role of relative entropy in quantum information theory, Rev. Mod. Phys. 74(1), 197 (2002)
CrossRef ADS Google scholar
[28]
A. E. Rastegin, Quantum-coherence quantifiers based on the Tsallis relative a entropies, Phys. Rev. A 93(3), 032136 (2016)
CrossRef ADS Google scholar
[29]
E. Chitambar and G. Gour, Comparison of incoherent operations and measures of coherence, Phys. Rev. A 94(5), 052336 (2016)
CrossRef ADS Google scholar
[30]
L. H. Shao, Y. Li, Y. Luo, and Z. Xi, Quantum coherence quantifiers based on the Rényi a-relative entropy, Commum. Theor. Phys. 67(6), 631 (2017)
CrossRef ADS Google scholar
[31]
A. Streltsov, H. Kampermann, S. Wölk, M. Gessner, and D. Bruß, Maximal coherence and the resource theory of purity, New J. Phys. 20(5), 053058 (2018)
CrossRef ADS Google scholar
[32]
L. H. Shao, Z. Xi, H. Fan, and Y. Li, Fidelity and tracenorm distances for quantifying coherence, Phys. Rev. A 91(4), 042120 (2015)
CrossRef ADS Google scholar
[33]
S. Rana, P. Parashar, and M. Lewenstein, Tracedistance measure of coherence, Phys. Rev. A 93(1), 012110 (2016)
CrossRef ADS Google scholar
[34]
H. J. Zhang, B. Chen, M. Li, S. M. Fei, and G. L. Long, Estimation on geometric measure of quantum coherence, Commum. Theor. Phys. 67(2), 166 (2017)
CrossRef ADS Google scholar
[35]
S. Cheng and M. J. W. Hall, Complementarity relations for quantum coherence, Phys. Rev. A 92(4), 042101 (2015)
CrossRef ADS Google scholar
[36]
U. Singh, A. K. Pati, and M. N. Bera, Uncertainty relations for quantum coherence, Mathematics 4(3), 47 (2016)
CrossRef ADS Google scholar
[37]
Y. Peng, Y. R. Zhang, Z.Y. Fan, S. Liu, and H. Fan, Complementary relation of quantum coherence and quantum correlations in multiple measurements, arXiv: 1608.07950 [quant-ph] (2016)
[38]
X. Yuan, G. Bai, T. Peng, and X. Ma, Quantum uncertainty relation using coherence, Phys. Rev. A 96(3), 032313 (2017)
CrossRef ADS Google scholar
[39]
A. E. Rastegin, Uncertainty relations for quantum coherence with respect to mutually unbiased bases, Front. Phys. 13(1), 130304 (2018)
CrossRef ADS Google scholar
[40]
M. N. Bera, T. Qureshi, M. A. Siddiqui, and A. K. Pati, Duality of quantum coherence and path distinguishability, Phys. Rev. A 92(1), 012118 (2015)
CrossRef ADS Google scholar
[41]
E. Bagan, J. A. Bergou, S. S. Cottrell, and M. Hillery, Relations between coherence and path information, Phys. Rev. Lett. 116(16), 160406 (2016)
CrossRef ADS Google scholar
[42]
T. Qureshi and M. A. Siddiqui, Wave-particle duality in N-path interference, Ann. Phys. 385, 598 (2017)
CrossRef ADS Google scholar
[43]
M. Hillery, Coherence as a resource in decision problems: The Deutsch-Jozsa algorithm and a variation, Phys. Rev. A 93(1), 012111 (2016)
CrossRef ADS Google scholar
[44]
H. L. Shi, S. Y. Liu, X. H. Wang, W. L. Yang, Z. Y. Yang, and H. Fan, Coherence depletion in the Grover quantum search algorithm, Phys. Rev. A 95(3), 032307 (2017)
CrossRef ADS Google scholar
[45]
N. Anand and A. K. Pati, Coherence and entanglement monogamy in the discrete analogue of analog Grover search, arXiv: 1611.04542 [quant-ph] (2016)
[46]
A. E. Rastegin, On the role of dealing with quantum coherence in amplitude amplification, Quantum Inf. Progress 17(7), 179 (2018)
CrossRef ADS Google scholar
[47]
D. Reitzner and M. Hillery, Grover search under localized dephasing, arXiv: 1712.06558 [quant-ph] (2017)
[48]
M. Hillery, J. Bergou, and E. Feldman, Quantum walks based on an interferometric analogy, Phys. Rev. A 68(3), 032314 (2003)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(323 KB)

Accesses

Citations

Detail

Sections
Recommended

/