Heralded amplification of single-photon entanglement with polarization feature

Yu-Yu Jin, Sheng-Xian Qin, Hao Zu, Lan Zhou, Wei Zhong, Yu-Bo Sheng

PDF(483 KB)
PDF(483 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (5) : 130321. DOI: 10.1007/s11467-018-0823-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Heralded amplification of single-photon entanglement with polarization feature

Author information +
History +

Abstract

Heralded noiseless amplification is beneficial in overcoming transmission photon loss in a noisy quantum channel. We propose a single-photon-assisted heralded noiseless amplification protocol of the singlephoton entanglement (SPE), where the single-photon qubit has an arbitrary unknown polarization feature. We focus on both the complete and partial photon loss during the transmission process. After the amplification, the parties can recover the pure less-entangled SPE into a maximally entangled SPE and increase its fidelity. Moreover, the polarization feature of the single-photon qubit will be well preserved and not be leaked. Our protocol can be realized under our current experimental condition. Based on the features above, our protocol may be useful in the quantum secure communication schemes that encode information in the polarization degree of freedom of photons.

Keywords

quantum communication / single-photon entanglement / quantum state amplification / polarization feature

Cite this article

Download citation ▾
Yu-Yu Jin, Sheng-Xian Qin, Hao Zu, Lan Zhou, Wei Zhong, Yu-Bo Sheng. Heralded amplification of single-photon entanglement with polarization feature. Front. Phys., 2018, 13(5): 130321 https://doi.org/10.1007/s11467-018-0823-x

References

[1]
C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein– Podolsky–Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)
CrossRef ADS Google scholar
[2]
M. Y. Wang and F. L. Yan, Quantum teleportation of a generic two-photon state with weak cross-Kerr nonlinearities, Quantum Inform. Process. 15(8), 3383 (2016)
CrossRef ADS Google scholar
[3]
T. C. Li and Z. Q. Yin, Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator, Sci. Bull. 61(2), 163 (2016)
CrossRef ADS Google scholar
[4]
M. D. G. Ramírez, B. J. Falaye, G. H. Sun, M. Cruz-Irisson, and S. H. Dong, Quantum teleportation and information splitting via four-qubit cluster state and a Bell state, Front. Phys. 12(5), 120306 (2017)
CrossRef ADS Google scholar
[5]
P. Y. Xiong, X. T. Yu, H. T. Zhan, and Z. C. Zhang, Multiple teleportation via partially entangled GHZ state, Front. Phys. 11(4), 110303 (2016)
CrossRef ADS Google scholar
[6]
G. L. Long and X. S. Liu, Theoretically efficient highcapacity quantum-key-distribution scheme, Phys. Rev. A 65(3), 032302 (2002)
CrossRef ADS Google scholar
[7]
F. G. Deng, G. L. Long, and X. S. Liu, Two-step quantum direct communication protocol using the Einstein– Podolsky–Rosen pair block, Phys. Rev. A 68(4), 042317 (2003)
CrossRef ADS Google scholar
[8]
C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, Quantum secure direct communication with highdimension quantum superdense coding, Phys. Rev. A 71(4), 044305 (2005)
CrossRef ADS Google scholar
[9]
F. Z. Wu, G. J. Yang, H. B. Wang, J. Xiong, F. Alzahrani, A. Hobiny, and F. G. Deng, High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states, Sci. China Phys. Mech. Astron. 60(12), 120313 (2017)
CrossRef ADS Google scholar
[10]
A. G. D. H. Guerra, F. F. S. Rios, and R. V. Ramos, Quantum secure direct communication of digital and analog signals using continuum coherent states, Quantum Inform. Process. 15(11), 4747 (2016)
CrossRef ADS Google scholar
[11]
W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, Quantum secure direct communication with quantum memory, Phys. Rev. Lett. 118(22), 220501 (2017)
CrossRef ADS Google scholar
[12]
F. Zhu, W. Zhang, Y. B. Sheng, and Y. D. Huang, Experimental long-distance quantum secret direct communication, Sci. Bull. 62(22), 1519 (2017)
CrossRef ADS Google scholar
[13]
A. K. Ekert, Quantum cryptography based on Bells theorem, Phys. Rev. Lett. 67(6), 661 (1991)
CrossRef ADS Google scholar
[14]
D. Y. Cao, B. H. Liu, Z. Wang, Y. F. Huang, C. F. Li, and G. C. Guo, Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons, Sci. Bull. 60(12), 1128 (2015)
CrossRef ADS Google scholar
[15]
B. K. Park, M. S. Lee, M. K. Woo, Y. S. Kim, S. W. Han, and S. Moon, QKD system with fast active optical path length compensation, Sci. China Phys. Mech. Astron. 60(6), 060311 (2017)
CrossRef ADS Google scholar
[16]
Y. B. Sheng and L. Zhou, Distributed secure quantum machine learning, Sci. Bull. 62(14), 1025 (2017)
CrossRef ADS Google scholar
[17]
W. Huang, Q. Su, B. J. Xu, B. Liu, F. Fan, H. Y. Jia, and Y. H. Yang, Improved multiparty quantum key agreement in travelling mode, Sci. China Phys. Mech. Astron. 59(12), 120311 (2016)
CrossRef ADS Google scholar
[18]
Q. Yu, Y. B. Zhang, J. Li, H. Y. Wang, X. H. Peng, and J. F. Du, Generic preparation and entanglement detection of equal superposition states, Sci. China Phys. Mech. Astron. 60(7), 070313 (2017)
CrossRef ADS Google scholar
[19]
G. A. Yan, H. X. Qiao, H. Lu, and A. X. Chen, Quantum information-holding single-photon router based on spontaneous emission, Sci. China Phys. Mech. Astron. 60(9), 090311 (2017)
CrossRef ADS Google scholar
[20]
C. J. Liu, W. Ye, W. D. Zhou, H. L. Zhang, J. H. Huang, and L. Y. Hu, Entanglement of coherent superposition of photon-subtraction squeezed vacuum, Front. Phys. 12(5), 120307 (2017)
CrossRef ADS Google scholar
[21]
M. Y. Wang, F. L. Yan, and T. Gao, Generation of fourphoton polarization entangled decoherence-free states with cross-Kerr nonlinearity, Sci. Rep. 6(1), 38233 (2016)
CrossRef ADS Google scholar
[22]
M. Y. Wang, F. L. Yan, and J. Z. Xu, Perfect entanglement concentration of an arbitrary four-photon polarization entangled state via quantum nondemolition detectors, J. Phys. B-At. Mol. Opt. 49(15), 155502 (2016)
CrossRef ADS Google scholar
[23]
A. Farouk, J. Batle, M. Elhoseny, M. Naseri, M. Lone, A. Fedorov, M. Alkhambashi, S. H. Ahmed, and M. Abdel-Aty, Robust general N user authentication scheme in a centralized quantum communication network via generalized GHZ states, Front. Phys. 13(2), 130306 (2018)
CrossRef ADS Google scholar
[24]
J. Batle, A. Farouk, O. Tarawneh, and S. Abdalla, Multipartite quantum correlations among atoms in QED cavities, Front. Phys. 13(1), 130305 (2018)
CrossRef ADS Google scholar
[25]
D. Salart, O. Landry, N. Sangouard, N. Gisin, H. Herrmann, B. Sanguinetti, C. Simon, W. Sohler, R. T. Thew, A. Thomas, and H. Zbinden, Purification of singlephoton entanglement, Phys. Rev. Lett. 104(18), 180504 (2010)
CrossRef ADS Google scholar
[26]
D. Gottesman, T. Jennewein, and S. Croke, Longerbaseline telescopes using quantum repeaters, Phys. Rev. Lett. 109(7), 070503 (2012)
CrossRef ADS Google scholar
[27]
T. Guerreiro, F. Monteiro, A. Martin, J. B. Brask, T. Vértesi, B. Korzh, M. Caloz, F. Bussières, V. B. Verma, A. E. Lita, R. P. Mirin, S. W. Nam, F. Marsilli, M. D. Shaw, N. Gisin, N. Brunner, H. Zbinden, and R. T. Thew, Demonstration of Einstein–Podolsky–Rosen steering using single-photon path entanglement and displacementbased detection, Phys. Rev. Lett. 117(7), 070404 (2016)
CrossRef ADS Google scholar
[28]
V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, The security of practical quantum key distribution, Rev. Mod. Phys. 81(3), 1301 (2009)
CrossRef ADS Google scholar
[29]
T. C. Ralph and A. P. Lund, Nondeterministic noiseless linear amplification of quantum systems, in: Proceedings of the 9th International Conference on Quantum Communication Measurement and Computing, A. lvovsky (Ed.), AIP, 2009, pp 155–160
CrossRef ADS Google scholar
[30]
N. Gisin, S. Pironio, and N. Sangouard, Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier, Phys. Rev. Lett. 105(7), 070501 (2010)
CrossRef ADS Google scholar
[31]
G. Y. Xiang, T. C. Ralph, A. P. Lund, N. Walk, and G. J. Pryde, Heralded noiseless linear amplification and distillation of entanglement, Nat. Photonics 4(5), 316 (2010)
CrossRef ADS Google scholar
[32]
M. Curty and T. Moroder, Heralded-qubit amplifiers for practical device-independent quantum key distribution, Phys. Rev. A 84, 010304(R) (2011)
[33]
D. Pitkanen, X. Ma, R. Wickert, P. van Loock, and N. Lütkenhaus, Efficient heralding of photonic qubits with applications to device-independent quantum key distribution, Phys. Rev. A 84(2), 022325 (2011)
CrossRef ADS Google scholar
[34]
C. I. Osorio, N. Bruno, N. Sangouard, H. Zbinden, N. Gisin, and R. T. Thew, Heralded photon amplification for quantum communication, Phys. Rev. A 86(2), 023815 (2012)
CrossRef ADS Google scholar
[35]
S. L. Zhang, S. Yang, X. B. Zou, B. S. Shi, and G. C. Guo, Protecting single-photon entangled state from photon loss with noiseless linear amplification, Phys. Rev. A 86(3), 034302 (2012)
CrossRef ADS Google scholar
[36]
T. J. Wang, C. Cao, and C. Wang, Linear-optical implementation of hyperdistillation from photon loss, Phys. Rev. A 89(5), 052303 (2014)
CrossRef ADS Google scholar
[37]
T. J. Wang and C. Wang, High-efficient entanglement distillation from photon loss and decoherence, Opt. Express 23(24), 31550 (2015)
CrossRef ADS Google scholar
[38]
N. A. McMahon, A. P. Lund, and T. C. Ralph, Optimal architecture for a nondeterministic noiseless linear amplifier, Phys. Rev. A 89(2), 023846 (2014)
CrossRef ADS Google scholar
[39]
S. L. Zhang, Y. L. Dong, X. B. Zou, B. S. Shi, and G. C. Guo, Continuous-variable-entanglement distillation with photon addition, Phys. Rev. A 88(3), 032324 (2013)
CrossRef ADS Google scholar
[40]
J. Minár̆, H. de Riedmatten, and N. Sangouard, Quantum repeaters based on heralded qubit amplifiers, Phys. Rev. A 85(3), 032313 (2012)
CrossRef ADS Google scholar
[41]
L. Zhou and Y. B. Sheng, Recyclable amplification protocol for the single-photon entangled state, Laser Phys. Lett. 12(4), 045203 (2015)
CrossRef ADS Google scholar
[42]
F. Monteiro, E. Verbanis, V. C. Vivoli, A. Martin, N. Gisin, H. Zbinden, and R. T. Thew, Heralded amplification of path entangled quantum states, Quantum Sci. Technol. 2(2), 024008 (2017)
CrossRef ADS Google scholar
[43]
E. Meyer-Scott, M. Bula, K. Bartkiewicz, A. Črnoch, J. Soubusta, T. Jennewein, and K. Lemr, Entanglementbased linear-optical qubit amplifier, Phys. Rev. A 88(1), 012327 (2013)
CrossRef ADS Google scholar
[44]
Y. Ou-Yang, Z. F. Feng, L. Zhou, and Y. B. Sheng, Protecting single-photon entanglement with imperfect single-photon source, Quantum Inform. Process. 14(2), 635 (2015)
CrossRef ADS Google scholar
[45]
Y. Ou-Yang, Z. F. Feng, L. Zhou, and Y. B. Sheng, Linear-optical qubit amplification with spontaneous parametric down-conversion source, Laser Phys. 26(1), 015204 (2016)
CrossRef ADS Google scholar
[46]
L. Zhou, Y. Ou-Yang, L. Wang, and Y. B. Sheng, Protecting single-photon entanglement with practical entanglement source, Quantum Inform. Process. 16(6), 151 (2017)
CrossRef ADS Google scholar
[47]
Z. F. Feng, Y. Ou-Yang, L. Zhou, and Y. B. Sheng, Distillation of arbitrary single-photon entanglement assisted with polarized Bell states, Quantum Inform. Process. 14(10), 3693 (2015)
CrossRef ADS Google scholar
[48]
Z. F. Feng, Y. Ou-Yang, L. Zhou, and Y. B. Sheng, Entanglement assisted single-photon W state amplification, Opt. Commun. 340, 80 (2015)
CrossRef ADS Google scholar
[49]
N. Bruno, V. Pini, A. Martin, V. B. Verma, S. W. Nam, R. Mirin, A. Lita, F. Marsili, B. Korzh, F. Bussieres, N. Sangouard, H. Zbinden, N. Gisin, and R. Thew, Heralded amplification of photonic qubits, Opt. Express 24(1), 125 (2016)
CrossRef ADS Google scholar
[50]
S. Kocsis, G. Y. Xiang, T. C. Ralph, and G. J. Pryde, Heralded noiseless amplification of a photon polarization qubit, Nat. Phys. 9(1), 23 (2013)
[51]
F. G. Deng, Optimal nonlocal multipartite entanglement concentration based on projection measurements, Phys. Rev. A 85(2), 022311 (2012)
CrossRef ADS Google scholar
[52]
Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs, Phys. Rev. A 85(1), 012307 (2012)
CrossRef ADS Google scholar
[53]
Y. B. Sheng, L. Zhou, and S. M. Zhao, Efficient twostep entanglement concentration for arbitraryWstates, Phys. Rev. A 85(4), 042302 (2012)
CrossRef ADS Google scholar
[54]
C. H. Bennett and G. Brassard, Proc. IEEE Int. Conf. Comput. Syst. Signal Process. 175, New York: IEEE, 1984
[55]
L. C. Comandar, M. Lucamarini, B. Fröhlich, J. F. Dynes, A. W. Sharpe, S. W. B. Tam, Z. L. Yuan, R. V. Penty, and A. J. Shields, Quantum key distribution without detector vulnerabilities using optically seeded lasers, Nat. Photonics 4(5), 312 (2016)
CrossRef ADS Google scholar
[56]
H. Wang, B. C. Ren, F. Alzahrani, A. Hobiny, and F. G. Deng, Hyperentanglement concentration for polarization-spatial-time-bin hyperentangled photon systems with linear optics, Quantum Inform. Process. 16(10), 237 (2017)
CrossRef ADS Google scholar
[57]
B. C. Ren, H. Wang, F. Alzahrani, A. Hobiny, and F. G. Deng, Hyperentanglement concentration of nonlocal two-photon six-qubit systems with linear optics, Ann. Phys. 385, 86 (2017)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(483 KB)

Accesses

Citations

Detail

Sections
Recommended

/