Fluctuation relations for heat exchange in the generalized Gibbs ensemble
Bo-Bo Wei
Fluctuation relations for heat exchange in the generalized Gibbs ensemble
In this work, we investigate the heat exchange between two quantum systems whose initial equilibrium states are described by the generalized Gibbs ensemble. First, we generalize the fluctuation relations for heat exchange discovered by Jarzynski and Wójcik to quantum systems prepared in the equilibrium states described by the generalized Gibbs ensemble at various generalized temperatures. Secondly, we extend the connections between heat exchange and the Rényi divergences to quantum systems under generic initial conditions. These relations are applicable for quantum systems with conserved quantities and universally valid for quantum systems in the integrable and chaotic regimes.
exchange fluctuation relation / generalized Gibbs ensemble
[1] |
C. Jarzynski and D. K. Wójcik, Classical and quantum fluctuation theorems for heat exchange, Phys. Rev. Lett. 92(23), 230602 (2004)
CrossRef
ADS
Google scholar
|
[2] |
B. B. Wei, Relations between heat exchange and the Rényi divergences, Phys. Rev. E 97(4), 042107 (2018)
CrossRef
ADS
Google scholar
|
[3] |
A. Rényi, in: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, University of California Press Press, 1961, pp 547–561
|
[4] |
T. van Erven and P. Harremoes, Rényi divergence and Kullback–Leibler divergence, IEEE Trans. Inf. Theory 60(7), 3797 (2014)
CrossRef
ADS
Google scholar
|
[5] |
S. Beigi, Sandwiched Rényi divergence satisfies data processing inequality, J. Math. Phys. 54(12), 122202 (2013)
CrossRef
ADS
Google scholar
|
[6] |
M. Müller-Lennert, F. Dupuis, O. Szehr, S. Fehr, and M. Tomamichel, On quantum Rényi entropies: A new generalization and some properties, J. Math. Phys. 54(12), 122203 (2013)
CrossRef
ADS
Google scholar
|
[7] |
M. Esposito, U. Harbola, and S. Mukamel, Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems, Rev. Mod. Phys. 81(4), 1665 (2009)
CrossRef
ADS
Google scholar
|
[8] |
C. Jarzynski, Equalities and inequalities: Irreversibility and the second law of thermodynamics at the nanoscale, Annu. Rev. Condens. Matter Phys. 2(1), 329 (2011)
CrossRef
ADS
Google scholar
|
[9] |
M. Campisi, P. Hanggi, and P. Talkner, Quantum fluctuation relations: Foundations and applications, Rev. Mod. Phys. 83(3), 771 (2011)
CrossRef
ADS
Google scholar
|
[10] |
T. Kinoshita, T. Wenger, and D. S. Weiss, A quantum Newton’s cradle, Nature 440(7086), 900 (2006)
CrossRef
ADS
Google scholar
|
[11] |
M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, Relaxation in a completely integrable many-body quantum system: An ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons, Phys. Rev. Lett. 98(5), 050405 (2007)
CrossRef
ADS
Google scholar
|
[12] |
P. Calabrese, F. H. L. Essler, and M. Fagotti, Quantum quench in the transverse field Ising chain, Phys. Rev. Lett. 106(22), 227203 (2011)
CrossRef
ADS
Google scholar
|
[13] |
M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer, M. Schreitl, I. Mazets, D. A. Smith, E. Demler, and J. Schmiedmayer, Relaxation and prethermalization in an isolated quantum system, Science 337(6100), 1318 (2012)
CrossRef
ADS
Google scholar
|
[14] |
J. P. Ronzheimer, M. Schreiber, S. Braun, S. S. Hodgman, S. Langer, I. P. McCulloch, F. Heidrich-Meisner, I. Bloch, and U. Schneider, Expansion dynamics of interacting bosons in homogeneous lattices in one and two dimensions, Phys. Rev. Lett. 110(20), 205301 (2013)
CrossRef
ADS
Google scholar
|
[15] |
J. S. Caux and F. H. Essler, Time evolution of local observables after quenching to an integrable model, Phys. Rev. Lett. 110(25), 257203 (2013)
CrossRef
ADS
Google scholar
|
[16] |
L. Vidmar, J. P. Ronzheimer, M. Schreiber, S. Braun, S. S. Hodgman, S. Langer, F. Heidrich-Meisner, I. Bloch, and U. Schneider, Dynamical quasicondensation of hard-core bosons at finite momenta, Phys. Rev. Lett. 115(17), 175301 (2015)
CrossRef
ADS
Google scholar
|
[17] |
L. Vidmar, D. Iyer, and M. Rigol, Emergent eigenstate solution to quantum dynamics far from equilibrium, Phys. Rev. X 7(2), 021012 (2017)
CrossRef
ADS
Google scholar
|
[18] |
C. Gogolin and J. Eisert, Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems, Rep. Prog. Phys. 79(5), 056001 (2016)
CrossRef
ADS
Google scholar
|
[19] |
L. Vidmar and M. Rigol, Generalized Gibbs ensemble in integrable lattice models, J. Stat. Mech. 2016(6), 064007 (2016)
CrossRef
ADS
Google scholar
|
[20] |
T. Langen, S. Erne, R. Geiger, B. Rauer, T. Schweigler, M. Kuhnert, W. Rohringer, I. E. Mazets, T. Gasenzer, and J. Schmiedmayer, Experimental observation of a generalized Gibbs ensemble, Science 348(6231), 207 (2015)
CrossRef
ADS
Google scholar
|
[21] |
L. E. Reichl, A Modern Course in Statistical Physics, Edward Arnold, Austin, TX, 1987
|
[22] |
E. T. Jaynes, Information theory and statistical mechanics, Phys. Rev. 106(4), 620 (1957)
CrossRef
ADS
Google scholar
|
[23] |
E. T. Jaynes, Information theory and statistical mechanics (II), Phys. Rev. 108(2), 171 (1957)
CrossRef
ADS
Google scholar
|
[24] |
W. Yang, W. L. Ma, and R. B. Liu, Quantum manybody theory for electron spin decoherence in nanoscale nuclear spin baths, Rep. Prog. Phys. 80(1), 016001 (2017)
CrossRef
ADS
Google scholar
|
[25] |
B. B. Wei, and R. B. Liu, Lee-Yang zeros and critical times in decoherence of a probe spin coupled to a bath, Phys. Rev. Lett. 109(18), 185701 (2012)
CrossRef
ADS
Google scholar
|
[26] |
B. B. Wei, S. W. Chen, H. C. Po, and R. B. Liu, Phase transitions in the complex plane of a physical parameter, Sci. Rep. 4(1), 5202 (2015)
CrossRef
ADS
Google scholar
|
[27] |
B. B. Wei, Z. F. Jiang, and R. B. Liu, Thermodynamic holography, Sci. Rep. 5(1), 15077 (2015)
CrossRef
ADS
Google scholar
|
[28] |
X. H. Peng, H. Zhou, B. B. Wei, J. Y. Cui, J. F. Du, and R. B. Liu, Experimental observation of Lee–Yang zeros, Phys. Rev. Lett. 114(1), 010601 (2015)
CrossRef
ADS
Google scholar
|
[29] |
B. B. Wei, Probing Yang–Lee edge singularity by central spin decoherence, New J. Phys. 19(8), 083009 (2017)
CrossRef
ADS
Google scholar
|
[30] |
B. B. Wei, Probing conformal invariant of non-unitary two dimensional system by central spin decoherence, Sci. Rep. 8(1), 3080 (2018)
CrossRef
ADS
Google scholar
|
[31] |
H. T. Quan, Z. Song, X. F. Liu, P. Zanardi, and C. P. Sun, Decay of Loschmidt echo enhanced by quantum criticality, Phys. Rev. Lett. 96(14), 140604 (2006)
CrossRef
ADS
Google scholar
|
[32] |
J. Zhang, X. Peng, N. Rajendran, and D. Suter, Detection of quantum critical points by a probe qubit, Phys. Rev. Lett. 100(10), 100501 (2008)
CrossRef
ADS
Google scholar
|
[33] |
S. W. Chen, Z. F. Jiang, and R. B. Liu, Quantum criticality at high temperature revealed by spin echo, New J. Phys. 15(4), 043032 (2013)
CrossRef
ADS
Google scholar
|
[34] |
B. B. Wei and M. B. Plenio, Relations between dissipated work in non-equilibrium process and the family of Rényi divergences, New J. Phys. 19(2), 023002 (2017)
CrossRef
ADS
Google scholar
|
[35] |
B. B. Wei, Links between dissipation and Rényi divergences in the PT-symmetric quantum mechanics, Phys. Rev. A 97(1), 012105 (2018)
CrossRef
ADS
Google scholar
|
[36] |
B. B. Wei, Relations between dissipated work and Rényi divergences in the generalized Gibbs ensemble, Phys. Rev. A 97(4), 042132 (2018)
CrossRef
ADS
Google scholar
|
[37] |
X. Y. Guo,
|
[38] |
A. Wehrl, General properties of entropy, Rev. Mod. Phys. 50(2), 221 (1978)
CrossRef
ADS
Google scholar
|
[39] |
J. Goold, U. Poschinger, and K. Modi, Measuring heat exchange of a quantum process, Phys. Rev. E 90(2), 020101 (2014)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |