Fluctuation relations for heat exchange in the generalized Gibbs ensemble

Bo-Bo Wei

PDF(423 KB)
PDF(423 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (5) : 130510. DOI: 10.1007/s11467-018-0822-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Fluctuation relations for heat exchange in the generalized Gibbs ensemble

Author information +
History +

Abstract

In this work, we investigate the heat exchange between two quantum systems whose initial equilibrium states are described by the generalized Gibbs ensemble. First, we generalize the fluctuation relations for heat exchange discovered by Jarzynski and Wójcik to quantum systems prepared in the equilibrium states described by the generalized Gibbs ensemble at various generalized temperatures. Secondly, we extend the connections between heat exchange and the Rényi divergences to quantum systems under generic initial conditions. These relations are applicable for quantum systems with conserved quantities and universally valid for quantum systems in the integrable and chaotic regimes.

Keywords

exchange fluctuation relation / generalized Gibbs ensemble

Cite this article

Download citation ▾
Bo-Bo Wei. Fluctuation relations for heat exchange in the generalized Gibbs ensemble. Front. Phys., 2018, 13(5): 130510 https://doi.org/10.1007/s11467-018-0822-y

References

[1]
C. Jarzynski and D. K. Wójcik, Classical and quantum fluctuation theorems for heat exchange, Phys. Rev. Lett. 92(23), 230602 (2004)
CrossRef ADS Google scholar
[2]
B. B. Wei, Relations between heat exchange and the Rényi divergences, Phys. Rev. E 97(4), 042107 (2018)
CrossRef ADS Google scholar
[3]
A. Rényi, in: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, University of California Press Press, 1961, pp 547–561
[4]
T. van Erven and P. Harremoes, Rényi divergence and Kullback–Leibler divergence, IEEE Trans. Inf. Theory 60(7), 3797 (2014)
CrossRef ADS Google scholar
[5]
S. Beigi, Sandwiched Rényi divergence satisfies data processing inequality, J. Math. Phys. 54(12), 122202 (2013)
CrossRef ADS Google scholar
[6]
M. Müller-Lennert, F. Dupuis, O. Szehr, S. Fehr, and M. Tomamichel, On quantum Rényi entropies: A new generalization and some properties, J. Math. Phys. 54(12), 122203 (2013)
CrossRef ADS Google scholar
[7]
M. Esposito, U. Harbola, and S. Mukamel, Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems, Rev. Mod. Phys. 81(4), 1665 (2009)
CrossRef ADS Google scholar
[8]
C. Jarzynski, Equalities and inequalities: Irreversibility and the second law of thermodynamics at the nanoscale, Annu. Rev. Condens. Matter Phys. 2(1), 329 (2011)
CrossRef ADS Google scholar
[9]
M. Campisi, P. Hanggi, and P. Talkner, Quantum fluctuation relations: Foundations and applications, Rev. Mod. Phys. 83(3), 771 (2011)
CrossRef ADS Google scholar
[10]
T. Kinoshita, T. Wenger, and D. S. Weiss, A quantum Newton’s cradle, Nature 440(7086), 900 (2006)
CrossRef ADS Google scholar
[11]
M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, Relaxation in a completely integrable many-body quantum system: An ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons, Phys. Rev. Lett. 98(5), 050405 (2007)
CrossRef ADS Google scholar
[12]
P. Calabrese, F. H. L. Essler, and M. Fagotti, Quantum quench in the transverse field Ising chain, Phys. Rev. Lett. 106(22), 227203 (2011)
CrossRef ADS Google scholar
[13]
M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer, M. Schreitl, I. Mazets, D. A. Smith, E. Demler, and J. Schmiedmayer, Relaxation and prethermalization in an isolated quantum system, Science 337(6100), 1318 (2012)
CrossRef ADS Google scholar
[14]
J. P. Ronzheimer, M. Schreiber, S. Braun, S. S. Hodgman, S. Langer, I. P. McCulloch, F. Heidrich-Meisner, I. Bloch, and U. Schneider, Expansion dynamics of interacting bosons in homogeneous lattices in one and two dimensions, Phys. Rev. Lett. 110(20), 205301 (2013)
CrossRef ADS Google scholar
[15]
J. S. Caux and F. H. Essler, Time evolution of local observables after quenching to an integrable model, Phys. Rev. Lett. 110(25), 257203 (2013)
CrossRef ADS Google scholar
[16]
L. Vidmar, J. P. Ronzheimer, M. Schreiber, S. Braun, S. S. Hodgman, S. Langer, F. Heidrich-Meisner, I. Bloch, and U. Schneider, Dynamical quasicondensation of hard-core bosons at finite momenta, Phys. Rev. Lett. 115(17), 175301 (2015)
CrossRef ADS Google scholar
[17]
L. Vidmar, D. Iyer, and M. Rigol, Emergent eigenstate solution to quantum dynamics far from equilibrium, Phys. Rev. X 7(2), 021012 (2017)
CrossRef ADS Google scholar
[18]
C. Gogolin and J. Eisert, Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems, Rep. Prog. Phys. 79(5), 056001 (2016)
CrossRef ADS Google scholar
[19]
L. Vidmar and M. Rigol, Generalized Gibbs ensemble in integrable lattice models, J. Stat. Mech. 2016(6), 064007 (2016)
CrossRef ADS Google scholar
[20]
T. Langen, S. Erne, R. Geiger, B. Rauer, T. Schweigler, M. Kuhnert, W. Rohringer, I. E. Mazets, T. Gasenzer, and J. Schmiedmayer, Experimental observation of a generalized Gibbs ensemble, Science 348(6231), 207 (2015)
CrossRef ADS Google scholar
[21]
L. E. Reichl, A Modern Course in Statistical Physics, Edward Arnold, Austin, TX, 1987
[22]
E. T. Jaynes, Information theory and statistical mechanics, Phys. Rev. 106(4), 620 (1957)
CrossRef ADS Google scholar
[23]
E. T. Jaynes, Information theory and statistical mechanics (II), Phys. Rev. 108(2), 171 (1957)
CrossRef ADS Google scholar
[24]
W. Yang, W. L. Ma, and R. B. Liu, Quantum manybody theory for electron spin decoherence in nanoscale nuclear spin baths, Rep. Prog. Phys. 80(1), 016001 (2017)
CrossRef ADS Google scholar
[25]
B. B. Wei, and R. B. Liu, Lee-Yang zeros and critical times in decoherence of a probe spin coupled to a bath, Phys. Rev. Lett. 109(18), 185701 (2012)
CrossRef ADS Google scholar
[26]
B. B. Wei, S. W. Chen, H. C. Po, and R. B. Liu, Phase transitions in the complex plane of a physical parameter, Sci. Rep. 4(1), 5202 (2015)
CrossRef ADS Google scholar
[27]
B. B. Wei, Z. F. Jiang, and R. B. Liu, Thermodynamic holography, Sci. Rep. 5(1), 15077 (2015)
CrossRef ADS Google scholar
[28]
X. H. Peng, H. Zhou, B. B. Wei, J. Y. Cui, J. F. Du, and R. B. Liu, Experimental observation of Lee–Yang zeros, Phys. Rev. Lett. 114(1), 010601 (2015)
CrossRef ADS Google scholar
[29]
B. B. Wei, Probing Yang–Lee edge singularity by central spin decoherence, New J. Phys. 19(8), 083009 (2017)
CrossRef ADS Google scholar
[30]
B. B. Wei, Probing conformal invariant of non-unitary two dimensional system by central spin decoherence, Sci. Rep. 8(1), 3080 (2018)
CrossRef ADS Google scholar
[31]
H. T. Quan, Z. Song, X. F. Liu, P. Zanardi, and C. P. Sun, Decay of Loschmidt echo enhanced by quantum criticality, Phys. Rev. Lett. 96(14), 140604 (2006)
CrossRef ADS Google scholar
[32]
J. Zhang, X. Peng, N. Rajendran, and D. Suter, Detection of quantum critical points by a probe qubit, Phys. Rev. Lett. 100(10), 100501 (2008)
CrossRef ADS Google scholar
[33]
S. W. Chen, Z. F. Jiang, and R. B. Liu, Quantum criticality at high temperature revealed by spin echo, New J. Phys. 15(4), 043032 (2013)
CrossRef ADS Google scholar
[34]
B. B. Wei and M. B. Plenio, Relations between dissipated work in non-equilibrium process and the family of Rényi divergences, New J. Phys. 19(2), 023002 (2017)
CrossRef ADS Google scholar
[35]
B. B. Wei, Links between dissipation and Rényi divergences in the PT-symmetric quantum mechanics, Phys. Rev. A 97(1), 012105 (2018)
CrossRef ADS Google scholar
[36]
B. B. Wei, Relations between dissipated work and Rényi divergences in the generalized Gibbs ensemble, Phys. Rev. A 97(4), 042132 (2018)
CrossRef ADS Google scholar
[37]
X. Y. Guo, , Demonstration of irreversibility and dissipation relation of thermodynamics with a superconducting qubit, arXiv: 1710.10234 (2017)
[38]
A. Wehrl, General properties of entropy, Rev. Mod. Phys. 50(2), 221 (1978)
CrossRef ADS Google scholar
[39]
J. Goold, U. Poschinger, and K. Modi, Measuring heat exchange of a quantum process, Phys. Rev. E 90(2), 020101 (2014)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(423 KB)

Accesses

Citations

Detail

Sections
Recommended

/