Ferroelectric polarization reversal tuned by magnetic field in a ferroelectric BiFeO3/Nb-doped SrTiO3 heterojunction
Pei Li, Zhao-Meng Gao, Xiu-Shi Huang, Long-Fei Wang, Wei-Feng Zhang, Hai-Zhong Guo
Ferroelectric polarization reversal tuned by magnetic field in a ferroelectric BiFeO3/Nb-doped SrTiO3 heterojunction
Interfacial resistive switching of a ferroelectric semiconductor heterojunction is highly advantageous for the newly developed ferroelectric memristors. Moreover, the interfacial state in the ferroelectric semiconductor heterojunction can be gradually modified by polarization reversal, which may give rise to continuously tunable resistive switching behavior. In this work, the interfacial state of a ferroelectric BiFeO3/Nb-doped SrTiO3 junction was modulated by ferroelectric polarization reversal. The dynamics of surface screening charges on the BiFeO3 layer was also investigated by surface potential measurements, and the decay of the surface potential could be speeded up by the magnetic field. Moreover, ferroelectric polarization reversal of the BiFeO3 layer was tuned by the magnetic field. This finding could provide a method to enhance the ferroelectric and electrical properties of ferroelectric BiFeO3 films by tuning the magnetic field.
ferroelectric semiconductor heterojunction / ferroelectric polarization reversal / pulsed laser deposition / Kelvin probe force microscopy
[1] |
J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures, Science 299(5613), 1719 (2003)
CrossRef
ADS
Google scholar
|
[2] |
S. H. Baek, C. M. Folkman, J. W. Park, S. Lee, C. W. Bark, T. Tybell, and C. B. Eom, The nature of polarization fatigue in BiFeO3, Adv. Mater. 23(14), 1621 (2011)
CrossRef
ADS
Google scholar
|
[3] |
H. Guo, R. Zhao, K. Jin, L. Gu, D. Xiao, Z. Yang, X. Li, L. Wang, X. He, J. Gu, Q. Wan, C. Wang, H. Lu, C. Ge, M. He, and G. Yang, Interfacial-strain-induced structural and polarization evolutions in epitaxial multiferroic BiFeO3 (001) thin films, ACS Appl. Mater. Interfaces 7(4), 2944 (2015)
CrossRef
ADS
Google scholar
|
[4] |
L. Wang, K. J. Jin, J. X. Gu, C. Ma, X. He, J. Zhang, C. Wang, Y. Feng, Q. Wan, J. A. Shi, L. Gu, M. He, H. B. Lu, and G. Z. Yang, A new non-destructive readout by using photo-recovered surface potential contrast, Sci. Rep. 4(1), 6980 (2015)
CrossRef
ADS
Google scholar
|
[5] |
J. X. Gu, K. J. Jin, L. Wang, X. He, H. Z. Guo, C. Wang, M. He, and G. Z. Yang, Long-time relaxation of photo-induced influence on BiFeO3 thin films, J. Appl. Phys. 118(20), 204103 (2015)
CrossRef
ADS
Google scholar
|
[6] |
T. Yang, X. Zhang, B. Chen, H. Guo, K. Jin, X. Wu, X. Gao, Z. Li, C. Wang, and X. Li, The evidence of giant surface flexoelectric field in (111) oriented BiFeO3 thin film, ACS Appl. Mater. Interfaces 9(6), 5600 (2017)
CrossRef
ADS
Google scholar
|
[7] |
B. C. Jeon, D. Lee, M. H. Lee, S. M. Yang, S. C. Chae, T. K. Song, S. D. Bu, J. S. Chung, J. G. Yoon, and T. W. Noh, Flexoelectric effect in the reversal of selfpolarization and associated changes in the electronic functional properties of BiFeO3 thin films, Adv. Mater. 25(39), 5643 (2013)
CrossRef
ADS
Google scholar
|
[8] |
R. Guo, L. You, M. Motapothula, Z. Zhang, M. B. H. Breese, L. Chen, D. Wu, and J. L. Wang, Influence of target composition and deposition temperature on the domain structure of BiFeO3 thin films, AIP Adv. 2(4), 042104 (2012)
CrossRef
ADS
Google scholar
|
[9] |
J. C. Yang, Q. He, P. Yu, and Y. H. Chu, BiFeO3 thin films: A playground for exploring electric-field control of multifunctionalities,Annu. Rev. Mater. Res. 45(1), 249 (2015)
CrossRef
ADS
Google scholar
|
[10] |
Y. Yang, I. C. Infante, B. Dkhil, and L. Bellaiche, Strain effects on multiferroic BiFeO3 films, Comp. Rend. Phys. 16(2), 193 (2015)
CrossRef
ADS
Google scholar
|
[11] |
Z. Gao, X. Huang, P. Li, L. Wang, L. Wei, W. Zhang, and H. Guo, Reversible resistance switching of 2D electron gas at LaAlO3/SrTiO3 heterointerface, Adv. Mater. Interfaces 5(8), 1701565 (2018)
CrossRef
ADS
Google scholar
|
[12] |
X. Huang, Z. Gao, P. Li, L. Wang, X. Liu, W. Zhang, and H. Guo, Resistance change effect in SrTiO3/Si(001) isotype heterojunction,J. Appl. Phys. 123(8), 084502 (2018)
CrossRef
ADS
Google scholar
|
[13] |
P. Sharma, Y. Heo, B. K. Jang, Y. Y. Liu, J. Y. Li, C. H. Yang, and J. Seidel, Structural and electronic transformation pathways in morphotropic BiFeO3, Sci. Rep. 6(1), 32347 (2016)
CrossRef
ADS
Google scholar
|
[14] |
C. Wang, K. J. Jin, Z. T. Xu, L. Wang, C. Ge, H. B. Lu, H. Z. Guo, M. He, and G. Z. Yang, Switchable diode effect and ferroelectric resistive switching in epitaxial BiFeO3 thin films, Appl. Phys. Lett. 98(19), 192901 (2011)
CrossRef
ADS
Google scholar
|
[15] |
C. Beekman, W. Siemons, M. Chi, N. Balke, J. Y. Howe, T. Z. Ward, P. Maksymovych, J. D. Budai, J. Z. Tischler, R. Xu, W. Liu, and H. M. Christen, Ferroelectric self-poling, switching, and monoclinic domain configuration in BiFeO3 thin films, Adv. Funct. Mater. 26(28), 5166 (2016)
CrossRef
ADS
Google scholar
|
[16] |
Y. L. Huang, W. S. Chang, C. N. Van, H. J. Liu, K. A. Tsai, J. W. Chen, H. H. Kuo, W. Y. Tzeng, Y. C. Chen, C. L. Wu, C. W. Luo, Y. J. Hsu, and Y. H. Chu, Tunable photoelectrochemical performance of Au/BiFeO3 heterostructure, Nanoscale 8(34), 15795 (2016)
CrossRef
ADS
Google scholar
|
[17] |
J. H. Lee, I. Fina, X. Marti, Y. H. Kim, D. Hesse, and M. Alexe, Spintronic functionality of BiFeO3 domain walls,Adv. Mater. 26(41), 7078 (2014)
CrossRef
ADS
Google scholar
|
[18] |
Y. Zhou, L. Fang, L. You, P. Ren, L. Wang, and J. L. Wang, Photovoltaic property of domain engineered epitaxial BiFeO3 films, Appl. Phys. Lett. 105(25), 252903 (2014)
CrossRef
ADS
Google scholar
|
[19] |
F. Bi, M. Huang, H. Lee, C. B. Eom, P. Irvin, and J. Levy, LaAlO3 thickness window for electronically controlled magnetism at LaAlO3/SrTiO3 heterointerfaces, Appl. Phys. Lett. 107(8), 082402 (2015)
CrossRef
ADS
Google scholar
|
[20] |
M. Trassin, G. D. Luca, S. Manz, and M. Fiebig, Probing ferroelectric domain engineering in BiFeO3 thin films by second harmonic generation, Adv. Mater. 27(33), 4871 (2015)
CrossRef
ADS
Google scholar
|
[21] |
Q. Li, Y. Cao, P. Yu, R. K. Vasudevan, N. Laanait, A. Tselev, F. Xue, L. Q. Chen, P. Maksymovych, S. V. Kalinin, and N. Balke, Giant elastic tunability in strained BiFeO3 near an electrically induced phase transition, Nat. Commun. 6(1), 8985 (2015)
CrossRef
ADS
Google scholar
|
[22] |
H. Guo, Q. Li, Z. Yang, K. J. Jin, C. Ge, L. Gu, X. He, X. Li, R. Zhao, Q. Wan, J. Wang, M. He, C. Wang, H. Lu, Y. Yang, and G. Yang, Manipulating magnetoelectric properties by interfacial coupling in La0.3Sr0.7MnO3/Ba0.7Sr0.3TiO3 superlattices,Sci. Rep. 7(1), 7693 (2017)
CrossRef
ADS
Google scholar
|
[23] |
R. Huang, H. C. Ding, W. I. Liang, Y. C. Gao, X. D. Tang, Q. He, C. G. Duan, Z. Zhu, J. Chu, C. A. J. Fisher, T. Hirayama, Y. Ikuhara, and Y. H. Chu, Atomic-scale visualization of polarization pinning and relaxation at coherent BiFeO3/LaAlO3 interfaces, Adv. Funct. Mater. 24(6), 793 (2014)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |