Pressure-induced superconducting ternary hydride H3SXe: A theoretical investigation

Da Li (李达), Yan Liu (刘妍), Fu-Bo Tian (田夫波), Shu-Li Wei (魏书丽), Zhao Liu (刘召), De-Fang Duan (段德芳), Bing-Bing Liu (刘冰冰), Tian Cui (崔田)

PDF(15109 KB)
PDF(15109 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (5) : 137107. DOI: 10.1007/s11467-018-0818-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Pressure-induced superconducting ternary hydride H3SXe: A theoretical investigation

Author information +
History +

Abstract

In general, heavy elements contribute only to acoustic phonon modes, which are less important for the superconductivity of hydrides. However, it was revealed that the heavier elements could enhance the phonon-mediated superconductivity in ternary hydrides. In the H3S–Xe system, a novel H3SXe compound was discovered by first-principle calculations. The structural phase transitions of H3SXe under high pressures were studied. The R-3m phase of H3SXe was predicted to appear at pressures above 80 GPa, which transitions to C2/m, P-3m1, and Pm-3m phases at pressures of 90, 160, and 220 GPa, respectively. It has been anticipated that the Pm-3m-H3SXe phase with a similar structural feature as that of Im-3m-H3S is a potential high-temperature superconductor with a Tc of 89 K at 240 GPa. The Tc value of H3SXe is lower than that of H3S at high pressure. The “H3S” host lattice of Pm- 3m-H3SXe is a crucial factor influencing the Tc value. The Xe atoms could accelerate the hydrogen-bond symmetrization. With the increase of the atomic number, the Tc value linearly increases in the H3S–noble-gas-element system. This indicates that the superconductivity can be modulated by changing the relative atomic mass of the noble-gas element.

Keywords

ternary hydrides / noble gas elements / chemical precompression / hydrogen-bond symmetrization

Cite this article

Download citation ▾
Da Li (李达), Yan Liu (刘妍), Fu-Bo Tian (田夫波), Shu-Li Wei (魏书丽), Zhao Liu (刘召), De-Fang Duan (段德芳), Bing-Bing Liu (刘冰冰), Tian Cui (崔田). Pressure-induced superconducting ternary hydride H3SXe: A theoretical investigation. Front. Phys., 2018, 13(5): 137107 https://doi.org/10.1007/s11467-018-0818-7

References

[1]
I. I. Mazin, Superconductivity: Extraordinarily conventional, Nature 525(7567), 40 (2015)
CrossRef ADS Google scholar
[2]
I. BožovićA conventional conundrum, Nat. Phys. 12(1), 22 (2016)
[3]
A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system, Nature 525(7567), 73 (2015)
CrossRef ADS Google scholar
[4]
M. Einaga, M. Sakata, T. Ishikawa, K. Shimizu, M. I. Eremets, A. P. Drozdov, I. A. Troyan, N. Hirao, and Y. Ohishi, Crystal structure of the superconducting phase of sulfur hydride, Nat. Phys. 12(9), 835 (2016)
[5]
D. Duan, Y. Liu, F. Tian, D. Li, X. Huang, Z. Zhao, H. Yu, B. Liu, W. Tian, and T. Cui, Pressure-induced metallization of dense (H2S)2H2 with high-Tcsuperconductivity, Sci. Rep. 4(1), 6968 (2015)
CrossRef ADS Google scholar
[6]
L. Ortenzi, E. Cappelluti, and L. Pietronero, Band structure and electron-phonon coupling in H3S: A tightbinding model, Phys. Rev. B 94(6), 064507 (2016)
CrossRef ADS Google scholar
[7]
D. A. Papaconstantopoulos, B. M. Klein, M. J. Mehl, and W. E. Pickett, Cubic H3S around 200 GPa: An atomic hydrogen superconductor stabilized by sulfur, Phys. Rev. B 91(18), 184511 (2015)
CrossRef ADS Google scholar
[8]
N. Bernstein, C. S. Hellberg, M. D. Johannes, I. I. Mazin, and M. J. Mehl, What superconducts in sulfur hydrides under pressure and why, Phys. Rev. B 91(6), 060511 (2015)
CrossRef ADS Google scholar
[9]
A. Bianconi and T. Jarlborg, Superconductivity above the lowest Earth temperature in pressurized sulfur hydride, EPL 112(3), 37001 (2015)
CrossRef ADS Google scholar
[10]
Y. Quan and W. E. Pickett, Van Hove singularities and spectral smearing in high-temperature superconducting H3S, Phys. Rev. B 93(10), 104526 (2016)
CrossRef ADS Google scholar
[11]
A. F. Goncharov, S. S. Lobanov, I. Kruglov, X. M. Zhao, X. J. Chen, A. R. Oganov, Z. Konôpková, and V. B. Prakapenka, Hydrogen sulfide at high pressure: Change in stoichiometry, Phys. Rev. B 93(17), 174105 (2016)
CrossRef ADS Google scholar
[12]
Y. Yuan, Y. Feng, L. Bian, D.B. Zhang, and X.Z. Li, The quantum nature of the superconducting hydrogen sulfide at finite temperatures, arXiv: 1607.02348 [condmat] (2016)
[13]
A. P. Durajski, Quantitative analysis of nonadiabatic effects in dense H3S and PH3 superconductors, Sci. Rep. 6(1), 38570 (2016)
CrossRef ADS Google scholar
[14]
H. Wang, X. Li, G. Gao, Y. Li, and Y. Ma, Hydrogenrich superconductors at high pressures, Wiley Interdiscip. Rev. Comput. Mol. Sci. 8(1), e1330 (2018)
CrossRef ADS Google scholar
[15]
Y. Yao and S. Tse John, Superconducting hydrogen sulfide, Chemistry 24(8), 1769 (2017)
CrossRef ADS Google scholar
[16]
R. Szczesniak and A. P. Durajski, The isotope effect in H3S superconductor, Solid State Commun. 249, 30 (2017)
CrossRef ADS Google scholar
[17]
A. P. Durajski and R. Szcze¸śniak, First-principles study of superconducting hydrogen sulfide at pressure up to 500 GPa, Sci. Rep. 7(1), 4473 (2017)
CrossRef ADS Google scholar
[18]
S. Azadi and T. D. Kühne, High-pressure hydrogen sulfide by diffusion quantum Monte Carlo, J. Chem. Phys. 146(8), 084503 (2017)
CrossRef ADS Google scholar
[19]
R. Akashi, M. Kawamura, S. Tsuneyuki, Y. Nomura, and R. Arita, First-principles study of the pressure and crystal-structure dependences of the superconducting transition temperature in compressed sulfur hydrides,Phys. Rev. B 91(22), 224513 (2015)
CrossRef ADS Google scholar
[20]
I. Errea, M. Calandra, C. J. Pickard, J. Nelson, R. J. Needs, Y. Li, H. Liu, Y. Zhang, Y. Ma, and F. Mauri, High-pressure hydrogen sulfide from first principles: A strongly anharmonic phonon-mediated superconductor,Phys. Rev. Lett. 114(15), 157004 (2015)
CrossRef ADS Google scholar
[21]
C. Heil and L. Boeri, Influence of bonding on superconductivity in high-pressure hydrides, Phys. Rev. B 92(6), 060508 (2015)
CrossRef ADS Google scholar
[22]
Y. Ge, F. Zhang, and Y. Yao, First-principles demonstration of superconductivity at 280 K in hydrogen sulfide with low phosphorus substitution, Phys. Rev. B 93(22), 224513 (2016)
CrossRef ADS Google scholar
[23]
M. Komelj and H. Krakauer, Electron-phonon coupling and exchange-correlation effects in superconducting H 3 S under high pressure, Phys. Rev. B 92(20), 205125 (2015)
CrossRef ADS Google scholar
[24]
E. J. Nicol and J. P. Carbotte, Comparison of pressurized sulfur hydride with conventional superconductors, Phys. Rev. B 91(22), 220507 (2015)
CrossRef ADS Google scholar
[25]
A. F. Goncharov, S. S. Lobanov, V. B. Prakapenka, and E. Greenberg, Stable high-pressure phases in the H-S system determined by chemically reacting hydrogen and sulfur, Phys. Rev. B 95(14), 140101 (2017)
CrossRef ADS Google scholar
[26]
B. Guigue, A. Marizy, and P. Loubeyre, Direct synthesis of pure H3S from S and H elements: No evidence of the cubic superconducting phase up to 160 GPa, Phys. Rev. B 95(2), 020104 (2017)
CrossRef ADS Google scholar
[27]
H. Wang, J. S. Tse, K. Tanaka, T. Iitaka, and Y. Ma, Superconductive sodalite-like clathrate calcium hydride at high pressures, Proc. Natl. Acad. Sci. USA 109(17), 6463 (2012)
CrossRef ADS Google scholar
[28]
Y. Li, L. Wang, H. Liu, Y. Zhang, J. Hao, C. J. Pickard, J. R. Nelson, R. J. Needs, W. Li, Y. Huang, I. Errea, M. Calandra, F. Mauri, and Y. Ma, Dissociation products and structures of solid H2S at strong compression, Phys. Rev. B 93(2), 020103 (2016)
CrossRef ADS Google scholar
[29]
T. Ishikawa, A. Nakanishi, K. Shimizu, H. Katayama-Yoshida, T. Oda, and N. Suzuki, Superconducting H5S2 phase in sulfur-hydrogen system under high-pressure, Sci. Rep. 6(1), 23160 (2016)
CrossRef ADS Google scholar
[30]
A. P. Drozdov, M. I. Eremets, and I. A. Troyan, Superconductivity above 100 K in PH3 at high pressures, arXiv: 1508.06224 [cond-mat] (2015)
[31]
H. Oh, S. Coh, and M. L. Cohen, Comparative study of high-Tcsuperconductivity in H3S and H3P, arXiv: 1606.09477 [cond-mat] (2016)
[32]
A. Shamp, T. Terpstra, T. Bi, Z. Falls, P. Avery, and E. Zurek, Decomposition Products of Phosphine Under Pressure: PH2 Stable and Superconducting? J. Am. Chem. Soc. 138(6), 1884 (2016)
CrossRef ADS Google scholar
[33]
S. Zhang, Y. Wang, J. Zhang, H. Liu, X. Zhong, H. F. Song, G. Yang, L. Zhang, and Y. Ma, Phase Diagram and high-temperature superconductivity of compressed selenium hydrides, Sci. Rep. 5(1), 15433 (2015)
CrossRef ADS Google scholar
[34]
X. Zhong, H. Wang, J. Zhang, H. Liu, S. Zhang, H. F. Song, G. Yang, L. Zhang, and Y. Ma, Tellurium hydrides at high pressures: High-temperature superconductors, Phys. Rev. Lett. 116(5), 057002 (2016)
CrossRef ADS Google scholar
[35]
K. Abe and N. W. Ashcroft, Stabilization and highly metallic properties of heavy group-V hydrides at high pressures, Phys. Rev. B 92(22), 224109 (2015)
CrossRef ADS Google scholar
[36]
Y. Fu, et al., Chem. Mater. (2016)
[37]
Y. Ma, et al., The unexpected binding and superconductivity in SbH4 at high pressure, arXiv: 1506.03889 [cond-mat] (2015)
[38]
Y. Wang, H. Wang, J. S. Tse, T. Iitaka, and Y. Ma, Structural morphologies of high-pressure polymorphs of strontium hydrides, Phys. Chem. Chem. Phys. 17, 19379 (2015)
CrossRef ADS Google scholar
[39]
Y. Li, J. Hao, H. Liu, J. S. Tse, Y. Wang, and Y. Ma, Pressure-stabilized superconductive yttrium hydrides, Sci. Rep. 5(1), 9948 (2015)
CrossRef ADS Google scholar
[40]
M. M. D. Esfahani, Z. Wang, A. R. Oganov, H. Dong, Q. Zhu, S. Wang, M. S. Rakitin, and X. F. Zhou, Superconductivity of novel tin hydrides (SnnHm) under pressure, Sci. Rep. 6(1), 22873 (2016)
CrossRef ADS Google scholar
[41]
H. Liu, I. I. Naumov, R. Hoffmann, N. W. Ashcroft, and R. J. Hemley, Potential high-Tc superconductinglanthanum and yttrium hydrides at high pressure, Proc. Natl. Acad. Sci. USA 114, 6990 (2017)
CrossRef ADS Google scholar
[42]
I. A. Kruglov, et al., Uranium polyhydrides at moderate pressures: Prediction, synthesis, and expected superconductivity, arXiv: 1708.05251 [cond-mat] (2017)
[43]
M. Rahm, R. Hoffmann, and N. W. Ashcroft, Ternary gold hydrides: Routes to stable and potentially superconducting compounds, J. Am. Chem. Soc. 139(25), 8740 (2017)
CrossRef ADS Google scholar
[44]
S. Zhang, L. Zhu, H. Liu, and G. Yang, Structure and electronic properties of Fe2SH3 compound under high pressure, Inorg. Chem. 55(21), 11434 (2016)
CrossRef ADS Google scholar
[45]
T. Muramatsu, W. K. Wanene, M. Somayazulu, E. Vinitsky, D. Chandra, T. A. Strobel, V. V. Struzhkin, and R. J. Hemley, Metallization and superconductivity in the hydrogen-rich ionic salt BaReH9, J. Phys. Chem. C 119(32), 18007 (2015)
CrossRef ADS Google scholar
[46]
Y. Ma, D. Duan, Z. Shao, H. Yu, H. Liu, F. Tian, X. Huang, D. Li, B. Liu, and T. Cui, Divergent synthesis routes and superconductivity of ternary hydride MgSiH6 at high pressure, Phys. Rev. B 96(14), 144518 (2017)
CrossRef ADS Google scholar
[47]
Y. Ma, D. Duan, Z. Shao, D. Li, L. Wang, H. Yu, F. Tian, H. Xie, B. Liu, and T. Cui, Prediction of superconducting ternary hydride MgGeH6: From divergent highpressure formation routes, Phys. Chem. Chem. Phys. 19(40), 27406 (2017)
CrossRef ADS Google scholar
[48]
W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140(4A), A1133 (1965)
CrossRef ADS Google scholar
[49]
P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136(3B), B864 (1964)
CrossRef ADS Google scholar
[50]
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
CrossRef ADS Google scholar
[51]
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef ADS Google scholar
[52]
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef ADS Google scholar
[53]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[54]
A. Togo, F. Oba, and I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B 78(13), 134106 (2008)
CrossRef ADS Google scholar
[55]
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, et al., QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter 21(39), 395502 (2009)
CrossRef ADS Google scholar
[56]
Y. Wang, J. Lv, L. Zhu, and Y. Ma, CALYPSO: A method for crystal structure prediction, Comput. Phys. Commun. 183(10), 2063 (2012)
CrossRef ADS Google scholar
[57]
Y. Wang, J. Lv, L. Zhu, and Y. Ma, Crystal structure prediction via particle-swarm optimization, Phys. Rev. B 82(9), 094116 (2010)
CrossRef ADS Google scholar
[58]
Y. Yao and J. S. Tse, Electron-phonon coupling in the high-pressure hcp phase of xenon: A first-principles study, Phys. Rev. B 75(13), 134104 (2007)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(15109 KB)

Accesses

Citations

Detail

Sections
Recommended

/