Alkali-metal-induced topological nodal line semimetalin layered XN2 (X= Cr, Mo, W)
Ali Ebrahimian, Mehrdad Mehrdad Dadsetaniz
Alkali-metal-induced topological nodal line semimetalin layered XN2 (X= Cr, Mo, W)
Based on first principles calculations and the K·p effective model, we propose that alkali metal deposition on the surface of hexagonal XN2 (X= Cr, Mo, W) nanosheets induces topologically nontrivial phases in these systems. When spin orbit coupling (SOC) is disregarded, the electron-like conduction band from N-pz orbitals can be considered to cross the hole-like valence band from X-d2z orbitals, thereby giving rise to a topological nodal line state in lithium-functionalized XN2 sheets (Li2MoN2 and Li2WN2). Such band crossing is protected by the existence of mirror reflection and time reversal symmetry. More interestingly, the bands cross exactly at the Fermi level, and the linear dispersion regions of such band crossings extend to as high as 0.9 eV above the crossing. For Li2CrN2, the results reveal the emergence of a Dirac cone at the Fermi level. Our calculations show that lattice compression decreases the thickness of a Li2CrN2 nanosheet, leading to phase transition to a nodal line semimetal. The evolution of the band gap of Li2XN2 at the Γ point indicates that the nontrivial topological character of Li2XN2 nanolayers is stable over a large strain range. When SOC is included, the band crossing point is gapped out giving rise to quantum spin Hall states in Li2CrN2 nanosheets, while for Li2MoN2, the SOC-induced gap at the crossing points is negligible.
topological semimetal / nodal-line states / Dirac cone / band inversion
[1] |
M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
CrossRef
ADS
Google scholar
|
[2] |
K. He, Topological insulator: Both two- and threedimensional, Front. Phys. 7(2), 148 (2012)
CrossRef
ADS
Google scholar
|
[3] |
D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, A topological Dirac insulator in a quantum spin Hall phase, Nature 452(7190), 970 (2008)
CrossRef
ADS
Google scholar
|
[4] |
Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Observation of a large-gap topological-insulator class with a single Dirac cone on the surface, Nat. Phys. 5(6), 398 (2009)
|
[5] |
S. Y. Xu, C. Liu, N. Alidoust, M. Neupane, D. Qian, I. Belopolski, J. D. Denlinger, Y. J. Wang, H. Lin, L. A. Wray, G. Landolt, B. Slomski, J. H. Dil, A. Marcinkova, E. Morosan, Q. Gibson, R. Sankar, F. C. Chou, R. J. Cava, A. Bansil, and M. Z. Hasan, Observation of a topological crystalline insulator phase and topological phase transition in Pb1−xSnxTe, Nat. Commun. 3(1), 1192 (2012)
CrossRef
ADS
Google scholar
|
[6] |
S. Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T. R. Chang, H. T. Jeng, C. Y. Huang, W. F. Tsai, H. Lin, F. Chou, P. P. Shibayev, R. J. Cava, and M. Z. Hasan, Observation of Fermi arc surface states in a topological metal, Science 347(6219), 294 (2015)
CrossRef
ADS
Google scholar
|
[7] |
Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Threedimensional Dirac semimetal and quantum transport in Cd3As2, Phys. Rev. B 88(12), 125427 (2013)
CrossRef
ADS
Google scholar
|
[8] |
B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, Experimental discovery of Weyl semimetal TaAs, Phys. Rev. X 5(3), 031013 (2015)
CrossRef
ADS
Google scholar
|
[9] |
C. K. Chiu and A. P. Schnyder, Classification of reflection-symmetry-protected topological semimetals and nodal superconductors, Phys. Rev. B 90(20), 205136 (2014)
CrossRef
ADS
Google scholar
|
[10] |
J. Behrends, J. W. Rhim, S. Liu, A. G. Grushin, and J. H. Bardarson, Nodal-line semimetals from Weyl superlattices, Phys. Rev. B 96(24), 245101 (2017)
CrossRef
ADS
Google scholar
|
[11] |
T. Bzdušek, Q. Wu, A. Ruegg, M. Sigrist, and A. A. Soluyanov, Nodal-chain metals, Nature 538(7623), 75 (2016)
CrossRef
ADS
Google scholar
|
[12] |
H. Weng, X. Dai, and Z. Fang, Topological semimetals predicted from first-principles calculations, J. Phys.: Condens. Matter 28(30), 303001 (2016)
CrossRef
ADS
Google scholar
|
[13] |
B. Bradlyn, J. Cano, Z. Wang, M. G. Vergniory, C. Felser, R. J. Cava, and B. A. Bernevig, Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals, Science 353(6299), aaf5037 (2016)
CrossRef
ADS
Google scholar
|
[14] |
H. Weng, C. Fang, Z. Fang, and X. Dai, Coexistence of Weyl fermion and massless triply degenerate nodal points, Phys. Rev. B 94(16), 165201 (2016)
CrossRef
ADS
Google scholar
|
[15] |
G. T. Volovik, Momentum space topology of fermion zero modes brane, JETP Lett. 75(2), 55 (2002)
CrossRef
ADS
Google scholar
|
[16] |
S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, Dirac semimetal in three dimensions, Phys. Rev. Lett. 108(14), 140405 (2012)
CrossRef
ADS
Google scholar
|
[17] |
M. Dadsetani and A. Ebrahimian, Breaking inversion symmetry induces excitonic peak in optical absorption of topological semimetal, J. Phys. Chem. Solids 100, 161 (2017)
CrossRef
ADS
Google scholar
|
[18] |
M. Dadsetani and A. Ebrahimian, Optical distinctions between Weyl semimetal TaAs and Dirac semimetal Na3Bi: An ab initio investigation,Journal of Elec., Materi. 45, 5867 (2016)
CrossRef
ADS
Google scholar
|
[19] |
Z. Wang, Y. Sun, X. Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, and Z. Fang, Dirac semimetal and topological phase transitions in A3Bi (A= Na, K, Rb), Phys. Rev. B 85(19), 195320 (2012)
CrossRef
ADS
Google scholar
|
[20] |
A. A. Burkov, Topological semimetals, Nat. Mater. 15(11), 1145 (2016)
CrossRef
ADS
Google scholar
|
[21] |
X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Topological semimetal and Fermi arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B 83(20), 205101 (2011)
CrossRef
ADS
Google scholar
|
[22] |
A. A. Burkov, M. D. Hook, and L. Balents, Topological nodal semimetals, Phys. Rev. B 84(23), 235126 (2011)
CrossRef
ADS
Google scholar
|
[23] |
M. Z. Hasan, S. Y. Xu, I. Belopolski, and S. M. Huang, Discovery of weyl fermion semimetals and topological fermi arc states, Annu. Rev. Condens. Matter Phys. 8(1), 289 (2017)
CrossRef
ADS
Google scholar
|
[24] |
C. Fang, Y. Chen, H. Y. Kee, and L. Fu, Topological nodal line semimetals with and without spin-orbital coupling, Phys. Rev. B 92(8), 081201 (2015)
CrossRef
ADS
Google scholar
|
[25] |
Y. X. Zhao, A. P. Schnyder, and Z. D. Wang, Unified theory of PT and CP invariant topological metals and nodal superconductors, Phys. Rev. Lett. 116(15), 156402 (2016)
CrossRef
ADS
Google scholar
|
[26] |
R. Yu, Z. Fang, X. Dai, and H. Weng, Topological nodal line semimetals predicted from first-principles calculations, Front. Phys. 12(3), 127202 (2017)
CrossRef
ADS
Google scholar
|
[27] |
H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, Weyl semimetal phase in noncentro-symmetric transition-metal monophosphides, Phys. Rev. X 5(1), 011029 (2015)
CrossRef
ADS
Google scholar
|
[28] |
Q. D. Gibson, L. M. Schoop, L. Muechler, L. S. Xie, M. Hirschberger, N. P. Ong, R. Car, and R. J. Cava, Three-dimensional Dirac semimetals: Design principles and predictions of new materials, Phys. Rev. B 91(20), 205128 (2015)
CrossRef
ADS
Google scholar
|
[29] |
M. Neupane, S. Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T. R. Chang, H. T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2, Nat. Commun. 5(1), 3786 (2014)
CrossRef
ADS
Google scholar
|
[30] |
S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Büchner, and R. J. Cava, experimental realization of a three-dimensional Dirac semimetal, Phys. Rev. Lett. 113(2), 027603 (2014)
CrossRef
ADS
Google scholar
|
[31] |
Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, Discovery of a threedimensional topological Dirac semimetal, Na3Bi, Science 343(6173), 864 (2014)
CrossRef
ADS
Google scholar
|
[32] |
S. Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T. R. Chang, H. T. Jeng, C. Y. Huang, W. F. Tsai, H. Lin, P. P. Shibayev, F. C. Chou, R. J. Cava, and M. Z. Hasan, Observation of Fermi arc surface states in a topological metal, Science 347(6219), 294 (2015)
CrossRef
ADS
Google scholar
|
[33] |
G. Bian, T. R. Chang, R. Sankar, S. Y. Xu, H. Zheng, T. Neupert, C. K. Chiu, S. M. Huang, G. Chang, I. Belopolski, D. S. Sanchez, M. Neupane, N. Alidoust, C. Liu, B. Wang, C. C. Lee, H. T. Jeng, C. Zhang, Z. Yuan, S. Jia, A. Bansil, F. Chou, H. Lin, and M. Z. Hasan, Topological nodal-line fermions in spin-orbit metal PbTaSe2, Nat. Commun. 7, 10556 (2016)
CrossRef
ADS
Google scholar
|
[34] |
Y. Wu, L. L. Wang, E. Mun, D. D. Johnson, D. Mou, L. Huang, Y. Lee, S. L. Bud’ko, P. C. Canfield, and A. Kaminski, Dirac node arcs in PtSn4, Nat. Phys. 12(7), 667 (2016)
|
[35] |
L. M. Schoop, M. N. Ali, C. Straßer, A. Topp, A. Varykhalov, D. Marchenko, V. Duppel, S. S. P. Parkin, B. V. Lotsch, and C. R. Ast, Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS, Nat. Commun. 7, 11696 (2016)
CrossRef
ADS
Google scholar
|
[36] |
M. Neupane, I. Belopolski, M. M. Hosen, D. S. Sanchez, R. Sankar, M. Szlawska, S. Y. Xu, K. Dimitri, N. Dhakal, P. Maldonado, P. M. Oppeneer, D. Kaczorowski, F. Chou, M. Z. Hasan, and T. Durakiewicz, Observation of topological nodal fermion semimetal phase in ZrSiS, Phys. Rev. B 93(20), 201104 (2016)
CrossRef
ADS
Google scholar
|
[37] |
T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2, Nat. Mater. 14(3), 280 (2015)
CrossRef
ADS
Google scholar
|
[38] |
Y. Zhao, H. Liu, C. Zhang, H. Wang, J. Wang, Z. Lin, Y. Xing, H. Lu, J. Liu, Y. Wang, S. M. Brombosz, Z. Xiao, S. Jia, X. C. Xie, and J. Wang, Anisotropic Fermi surface and quantum limit transport in high mobility three-dimensional Dirac semimetal Cd3As2, Phys. Rev. X 5(3), 031037 (2015)
CrossRef
ADS
Google scholar
|
[39] |
H. Wang, H. Wang, H. Liu, H. Lu, W. Yang, S. Jia, X.J. Liu, X. C. Xie, J. Wei, and J. Wang, Observation of superconductivity induced by a point contact on 3D Dirac semimetal Cd3As2 crystals, Nat. Mater. 15(1), 38 (2016)
CrossRef
ADS
Google scholar
|
[40] |
H. Weng, Y. Liang, Q. Xu, R. Yu, Z. Fang, X. Dai, and Y. Kawazoe, Topological node-line semimetal in threedimensional graphene networks, Phys. Rev. B 92(4), 045108 (2015)
CrossRef
ADS
Google scholar
|
[41] |
R. Yu, H. Weng, Z. Fang, X. Dai, and X. Hu, Topological node-line semimetal and Dirac semimetal state in antiperovskite Cu3PdN, Phys. Rev. Lett. 115(3), 036807 (2015)
CrossRef
ADS
Google scholar
|
[42] |
Y. Kim, B. J. Wieder, C. L. Kane, and A. M. Rappe, Dirac line nodes in inversion-symmetric crystals, Phys. Rev. Lett. 115(3), 036806 (2015)
CrossRef
ADS
Google scholar
|
[43] |
J. Zhang, M. Gao, J. Zhang, X. Wang, X. Zhang, M. Zhang, W. Niu, R. Zhang, and Y. Xu, Transport evidence of 3D topological nodal-line semimetal phase in ZrSiS, Front. Phys. 13(1), 137201 (2018)
CrossRef
ADS
Google scholar
|
[44] |
L. M. Schoop, M. N. Ali, C. Straßer, A. Topp, A. Varykhalov, D. Marchenko, V. Duppel, S. S. P. Parkin, B. V. Lotsch, and C. R. Ast, Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS, Nat. Commun. 7, 11696 (2016)
CrossRef
ADS
Google scholar
|
[45] |
S. M. Young and C. L. Kane, Dirac semimetals in two dimensions, Phys. Rev. Lett. 115(12), 126803 (2015)
CrossRef
ADS
Google scholar
|
[46] |
C. Niu, P. M. Buhl, G. Bihlmayer, D. Wortmann, Y. Dai, S. Blügel, and Y. Mokrousov, Two-dimensional topological nodal line semimetal in layered X2Y (X= Ca, Sr, and Ba; Y=As, Sb, and Bi), Phys. Rev. B 95(23), 235138 (2017)
CrossRef
ADS
Google scholar
|
[47] |
J. L. Lu, W. Luo, X. Y. Li, S. Q. Yang, J. X. Cao, X. G. Gong, and H. J. Xiang, Two-dimensional node-line semimetals in a honeycomb-Kagome lattice, Chin. Phys. Lett. 34(5), 057302 (2017)
CrossRef
ADS
Google scholar
|
[48] |
Y. J. Jin, R. Wang, J. Z. Zhao, Y. P. Du, C. D. Zheng, L. Y. Gan, J. F. Liu, H. Xu, and S. Y. Tong, The prediction of a family group of two-dimensional node-line semimetals, Nanoscale 9(35), 13112 (2017)
CrossRef
ADS
Google scholar
|
[49] |
B. Yang, X. Zhang, and M. Zhao, Dirac node lines in two-dimensional Lieb lattices, Nanoscale 9(25), 8740 (2017)
CrossRef
ADS
Google scholar
|
[50] |
A. Ebrahimian and M. Dadsetani, Dependence of topological and optical properties on surface-terminated groups in two-dimensional molybdenum dinitride and tungsten dinitride nanosheets, Phys. Chem. Chem. Phys. 19(45), 30301 (2017)
CrossRef
ADS
Google scholar
|
[51] |
B. Feng, B. Fu, S. Kasamatsu, S. Ito, P. Cheng, C. C. Liu, Y. Feng, S. Wu, S. K. Mahatha, P. Sheverdyaeva, P. Moras, M. Arita, O. Sugino, T. C. Chiang, K. Shimada, K. Miyamoto, T. Okuda, K. Wu, L. Chen, Y. Yao, and I. Matsuda, Experimental realization of twodimensional Dirac nodal line fermions in monolayer Cu2Si, Nat. Commun. 8(1), 1007 (2017)
CrossRef
ADS
Google scholar
|
[52] |
N. B. Kopnin, T. T. Heikkila, and G. E. Volovik, High temperature surface superconductivity in topological flat-band systems, Phys. Rev. B 83(22), 220503 (2011)
CrossRef
ADS
Google scholar
|
[53] |
Z. Y. Zhu, Y. C. Cheng, and U. Schwingenschlögl, Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors, Phys. Rev. B 84(15), 153402 (2011)
CrossRef
ADS
Google scholar
|
[54] |
D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, Coupled spin and valley physics in monolayers of MoS2 and other group-VI Dichalcogenides, Phys. Rev. Lett. 108(19), 196802 (2012)
CrossRef
ADS
Google scholar
|
[55] |
Y. Ma, L. Kou, X. Li, Y. Dai, and T. Heine, Twodimensional transition metal dichalcogenides with a hexagonal lattice: Room-temperature quantum spin Hall insulators, Phys. Rev. B 93(3), 035442 (2016)
CrossRef
ADS
Google scholar
|
[56] |
P. F. Liu, L. Zhou, T. Frauenheim, and L. M. Wu, New quantum spin Hall insulator in two-dimensional MoS2, with periodically distributed pores, Nanoscale 8(9), 4915 (2016)
CrossRef
ADS
Google scholar
|
[57] |
P. F. Liu, L. Zhou, T. Frauenheim, and L. M. Wu, Two dimensional hydrogenated molybdenum and tungsten dinitrides MN2H2 (M= Mo, W) as novel quantum spin hall insulators with high stability, Nanoscale 9(3), 1007 (2017)
CrossRef
ADS
Google scholar
|
[58] |
N. Alidoust, G. Bian, S. Y. Xu, R. Sankar, M. Neupane, C. Liu, I. Belopolski, D. X. Qu, J. D. Denlinger, F. C. Chou, and M. Z. Hasan, Observation of monolayer valence band spin-orbit effect and induced quantum well states in MoX2, Nat. Commun. 5(1), 4673 (2014)
CrossRef
ADS
Google scholar
|
[59] |
K. Dolui, I. Rungger, C. Das Pemmaraju, and S. Sanvito, Possible doping strategies for MoS2 monolayers: An ab initio study, Phys. Rev. B 88(7), 075420 (2013)
CrossRef
ADS
Google scholar
|
[60] |
J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)
CrossRef
ADS
Google scholar
|
[61] |
K. Hummer, J. Harl, and G. Kresse, Heyd-Scuseria- Ernzerhof hybrid functional for calculating the lattice dynamics of semiconductors, Phys. Rev. B 80(11), 115205 (2009)
CrossRef
ADS
Google scholar
|
[62] |
F. Tran and P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchangecorrelation potential, Phys. Rev. Lett. 102(22), 226401 (2009)
CrossRef
ADS
Google scholar
|
[63] |
P. Blaha, K. Schwarz, G. Madsen, D. Kvasicka, and J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local OrbitalsProgram for Calculating Crystal Properties, TU Vienna, Vienna,2001
|
[64] |
V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, and M. Scheffler, Ab initio molecular simulations with numeric atom-centered orbitals, Comput. Phys. Commun. 180(11), 2175 (2009)
CrossRef
ADS
Google scholar
|
[65] |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef
ADS
Google scholar
|
[66] |
X. Zhang, X. F. Qiao, W. Shi, J. B. Wu, D. S. Jiang, and P. H. Tan, Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material, Chem. Soc. Rev. 44(9), 2757 (2015)
CrossRef
ADS
Google scholar
|
[67] |
See the Supplemental Material.
|
[68] |
G. Bian, T. R. Chang, H. Zheng, S. Velury, S. Y. Xu, T. Neupert, C. K. Chiu, S. M. Huang, D. S. Sanchez, I. Belopolski, N. Alidoust, P. J. Chen, G. Chang, A. Bansil, H. T. Jeng, H. Lin, and M. Z. Hasan, Drumhead surface states and topological nodal-line fermions in TlTaSe2, Phys. Rev. B 93(12), 121113 (2016)
CrossRef
ADS
Google scholar
|
[69] |
L. Fu, C. L. Kane, and E. J. Mele, Topological insulators in three dimensions, Phys. Rev. Lett. 98(10), 106803 (2007)
CrossRef
ADS
Google scholar
|
[70] |
L. Fu and C. L. Kane, Topological insulators with inversion symmetry, Phys. Rev. B 76(4), 045302 (2007)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |