A critical path approach for elucidating the temperature dependence of granular hopping conduction
Tsz Chun Wu , Juhn-Jong Lin , Ping Sheng
Front. Phys. ›› 2018, Vol. 13 ›› Issue (5) : 137205
A critical path approach for elucidating the temperature dependence of granular hopping conduction
We revisit the classical problem of granular hopping conduction’s σ∝exp[–(T0/T)] temperature dependence, where σ denotes conductivity, T is temperature, and T0 is a sample-dependent constant. By using the hopping conduction formulation in conjunction with the incorporation of the random potential that has been shown to exist in insulator-conductor composites, it is demonstrated that the widely observed temperature dependence of granular hopping conduction emerges very naturally through the immediate-neighbor critical-path argument. Here, immediate-neighbor pairs are defined to be those where a line connecting two grains does not cross or by-pass other grains, and the critical-path argument denotes the derivation of sample conductance based on the geometric percolation condition that is marked by the critical conduction path in a random granular composite. Simulations based on the exact electrical network evaluation of finite-sample conductance show that the configurationaveraged results agree well with those obtained using the immediate-neighbor critical-path method. Furthermore, the results obtained using both these methods show good agreement with experimental data on hopping conduction in a sputtered metal-insulator composite Agx(SnO2)1–x, where x denotes the metal volume fraction. The present approach offers a relatively straightforward and simple explanation for the temperature behavior that has been widely observed over diverse material systems, but which has remained a puzzle in spite of the various efforts made to explain this phenomenon.
granular hopping conduction / insulator-conductor composites / critical path method / immediate-neighbor hopping
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
/
| 〈 |
|
〉 |