A critical path approach for elucidating the temperature dependence of granular hopping conduction

Tsz Chun Wu , Juhn-Jong Lin , Ping Sheng

Front. Phys. ›› 2018, Vol. 13 ›› Issue (5) : 137205

PDF (511KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (5) : 137205 DOI: 10.1007/s11467-018-0814-y
RESEARCH ARTICLE

A critical path approach for elucidating the temperature dependence of granular hopping conduction

Author information +
History +
PDF (511KB)

Abstract

We revisit the classical problem of granular hopping conduction’s σ∝exp[–(T0/T)] temperature dependence, where σ denotes conductivity, T is temperature, and T0 is a sample-dependent constant. By using the hopping conduction formulation in conjunction with the incorporation of the random potential that has been shown to exist in insulator-conductor composites, it is demonstrated that the widely observed temperature dependence of granular hopping conduction emerges very naturally through the immediate-neighbor critical-path argument. Here, immediate-neighbor pairs are defined to be those where a line connecting two grains does not cross or by-pass other grains, and the critical-path argument denotes the derivation of sample conductance based on the geometric percolation condition that is marked by the critical conduction path in a random granular composite. Simulations based on the exact electrical network evaluation of finite-sample conductance show that the configurationaveraged results agree well with those obtained using the immediate-neighbor critical-path method. Furthermore, the results obtained using both these methods show good agreement with experimental data on hopping conduction in a sputtered metal-insulator composite Agx(SnO2)1–x, where x denotes the metal volume fraction. The present approach offers a relatively straightforward and simple explanation for the temperature behavior that has been widely observed over diverse material systems, but which has remained a puzzle in spite of the various efforts made to explain this phenomenon.

Keywords

granular hopping conduction / insulator-conductor composites / critical path method / immediate-neighbor hopping

Cite this article

Download citation ▾
Tsz Chun Wu, Juhn-Jong Lin, Ping Sheng. A critical path approach for elucidating the temperature dependence of granular hopping conduction. Front. Phys., 2018, 13(5): 137205 DOI:10.1007/s11467-018-0814-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

B. Abeles, P. Sheng, M. D. Coutts, and Y. Arie, Structural and electrical properties of granular metal films, Adv. Phys. 24(3), 407 (1975)

[2]

C. J. Adkins, Conduction in granular metals-ariablerange hopping in a Coulomb gap? J. Phys.: Condens. Matter 1(7), 1253 (1989)

[3]

P. Sheng, B. Abeles, and Y. Arie, Hopping conductivity in granular metals, Phys. Rev. Lett. 31(1), 44 (1973)

[4]

S. Barzilai, Y. Goldstein, I. Balberg, and J. S. Helman, Magnetic and transport properties of granular cobalt films, Phys. Rev. B 23(4), 1809 (1981)

[5]

S. P. McAlister, A. D. Inglis, and P. M. Kayll, Conduction in cosputtered Au-SiO2 films, Phys. Rev. B 31(8), 5113 (1985)

[6]

S. P. McAlister, A. D. Inglis, and D. R. Kroeker, Crossover between hopping and tunnelling conduction in Au-SiO2 films, J. Phys. C 17(28), L751 (1984)

[7]

H. Bakkali and M. Dominguez, Differential conductance of Pd-ZrO2 thin granular films prepared by RF magnetron sputtering, Europhys. Lett. 104(1), 17007 (2013)

[8]

V. F. Gantmakher, Electrons and Disorder in Solids, Oxford: Clarendon, 2005

[9]

Y. N. Wu, Y. F. Wei, Z. Q. Li, and J. J. Lin, Granular hopping conduction in (Ag, Mo)x(SnO2)1–x films in the dielectric regime, arXiv: 1708.04434 (2017)

[10]

N. F. Mott, Conduction in glasses containing transition metal ions, J. Non-crystal. Solids 1(1), 1 (1968)

[11]

N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, Oxford: Clarendon, 1979

[12]

A. L. Efros and B. I. Shklovskii, Coulomb gap and low temperature conductivity of disordered systems, J. Phys. C 8(4), L49 (1975)

[13]

A. L. Efros, Coulomb gap in disordered systems, J. Phys. C 9(11), 2021 (1976)

[14]

B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors, New York: Springer, 1984

[15]

A. Miller and E. Abrahams, Impurity conduction at low concentrations, Phys. Rev. 120(3), 745 (1960)

[16]

V. Ambegaokar, B. I. Halperin, and J. S. Langer, Hopping conductivity in disordered systems, Phys. Rev. B 4(8), 2612 (1971)

[17]

V. K. S. Shante, Variable-range hopping conduction in thin films, Phys. Lett. A 43(3), 249 (1973)

[18]

V. K. S. Shante, Hopping conduction in quasi-onedimensional disordered compounds, Phys. Rev. B 16(6), 2597 (1977)

[19]

C. J. Adkins, Conduction in granular metals with potential disorder, J. Phys. C 20(2), 235 (1987)

[20]

M. Pollak and C. J. Adkins, Conduction in granular metals, Philos. Mag. B 65(4), 855 (1992)

[21]

C. J. Adkins, J. D. Benjamin, J. M. D. Thomas, J. W. Gardner, and A. J. McGeown, Potential disorder in granular metal systems: The field effect in discontinuous metal films, J. Phys. C 17(26), 4633 (1984)

[22]

A. J. McGeown and C. J. Adkins, Thermopower in discontinuous metal films, J. Phys. C 19(11), 1753 (1986)

[23]

R. E. Cavicchi and R. H. Silsbee, Coulomb suppression of tunneling rate from small metal particles, Phys. Rev. Lett. 52(16), 1453 (1984)

[24]

J. W. Gardner and C. J. Adkins, Island charging energies and random potentials in discontinuous metal films, J. Phys. C 18(35), 6523 (1985)

[25]

R. A. Buhrman and C. G. Granqvist, Log-normal size distributions from magnetization measurements on small superconducting Al particles, J. Appl. Phys. 47(5), 2220 (1976)

[26]

J. Zhang and B. I. Shklovskii, Density of states and conductivity of a granular metal or an array of quantum dots, Phys. Rev. B 70(11), 115317 (2004)

[27]

I. S. Beloborodov, A. V. Lopatin, and V. M. Vinokur, Coulomb effects and hopping transport in granular metals, Phys. Rev. B 72(12), 125121 (2005)

[28]

C. H. Lin and G. Y. Wu, Hopping conduction in granular metals, Physica B 279(4), 341 (2000)

[29]

K. B. Efetov and A. Tschersich, Coulomb effects in granular materials at not very low temperatures, Phys. Rev. B 67(A5), 174205 (2003)

[30]

T. Chui, G. Deutscher, P. Lindenfeld, and W. L. McLean, Conduction in granular aluminum near the metal-insulator transition, Phys. Rev. B 23(11), 6172 (1981)

[31]

Y. H. Lin, Y. C. Sun, W. B. Jian, H. M. Chang, Y. S. Huang, and J. J. Lin, Electrical transport studies of individual IrO2 nanorods and their nanorod contacts, Nanotechnology 19(4), 045711 (2008)

[32]

P. Sheng and J. Klafter, Hopping conductivity in granular disordered systems, Phys. Rev. B 27(4), 2583 (1983)

[33]

J. Klafter and P. Sheng, The Coulomb quasigap and the metal-insulator transition in granular systems, J. Phys. C Solid State Phys. 17(3), L93 (1984)

[34]

C. J. Adkins, Hopping and Related Phenomena, Eds. H Fritzsche and M Pollak, Singapore: World Scientific, 1990, pp 93–109

[35]

H. Zhang, J. Lu, W. Shi, Z. Wang, T. Zhang, M. Sun, Y. Zheng, Q. Chen, N. Wang, J. J. Lin, and P. Sheng, Large-scale mesoscopic transport in nanostructured graphene, Phys. Rev. Lett. 110(6), 066805 (2013)

[36]

Y. L. Huang, S. P. Chiu, Z. X. Zhu, Z. Q. Li, and J. J. Lin, Variable-range-hopping conduction processes in oxygen deficient polycrystalline ZnO films, J. Appl. Phys. 107(6), 063715 (2010)

[37]

M. V. Feigel’man and A. S. Ioselevich, Variable-range cotunneling and conductivity of a granular metal, JETP Lett. 81(6), 277 (2005)

[38]

C. H. Lin and G. Y. Wu, Percolation calculation with non-nearest neighbor hopping of hopping resistances for granular metals, Thin Solid Films 397(1–2), 280 (2001)

[39]

P. Sheng, Introduction to Wave Scattering, Localization and Mesoscopic Phenomena, Heidelberg: Springer, 2006

[40]

G. E. Pike and C. H. Seager, Percolation and conductivity: A computer study (I), Phys. Rev. B 10(4), 1421 (1974)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (511KB)

1010

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/