Analytic calculation of high-order corrections to quantum phase transitions of ultracold Bose gases in bipartite superlattices
Zhi Lin, Wanli Liu
Analytic calculation of high-order corrections to quantum phase transitions of ultracold Bose gases in bipartite superlattices
We clarify some technical issues in the present generalized effective-potential Landau theory (GEPLT) to make the GEPLT more consistent and complete. Utilizing this clarified GEPLT, we analytically study the quantum phase transitions of ultracold Bose gases in bipartite superlattices at zero temperature. The corresponding quantum phase boundaries are analytically calculated up to the third-order hopping, which are in excellent agreement with the quantum Monte Carlo (QMC) simulations.
ultracold Bose gases / quantum phase transition / bipartite superlattice / generalized effective-potential Landau theory
[1] |
M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen(De), and U. Sen, Ultracold atomic gases in optical lattices: Mimicking condensed matter physics and beyond, Adv. Phys. 56(2), 243 (2007)
CrossRef
ADS
Google scholar
|
[2] |
I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80(3), 885 (2008)
CrossRef
ADS
Google scholar
|
[3] |
J. Dalibard, F. Gerbier, G. Juzeliunas, and P. Öhberg, Artificial gauge potentials for neutral atoms, Rev. Mod. Phys. 83(4), 1523 (2011)
CrossRef
ADS
Google scholar
|
[4] |
V. Galitski and I. B. Spielman, Spin–orbit coupling in quantum gases, Nature 494(7435), 49 (2013)
CrossRef
ADS
Google scholar
|
[5] |
N. Goldman, G. Juzeliunas, P. Öhberg, and I. B. Spielman, Light-induced gauge fields for ultracold atoms, Rep. Prog. Phys. 77(12), 126401 (2014)
CrossRef
ADS
Google scholar
|
[6] |
H. Zhai, Degenerate quantum gases with spin–orbit coupling: A review,Rep. Prog. Phys. 78(2), 026001 (2015)
CrossRef
ADS
Google scholar
|
[7] |
A. Eckardt, Atomic quantum gases in periodically driven optical lattices, Rev. Mod. Phys. 89(1), 011004 (2017)
CrossRef
ADS
Google scholar
|
[8] |
I. Buluta and F. Nori, Quantum simulators, Science 326(5949), 108 (2009)
CrossRef
ADS
Google scholar
|
[9] |
I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Rev. Mod. Phys. 86(1), 153 (2014)
CrossRef
ADS
Google scholar
|
[10] |
C. Gross and I. Bloch, Microscopy of many-body states in optical lattices, Annu. Rev. Cold At. Mol. 3, 181 (2015)
CrossRef
ADS
Google scholar
|
[11] |
M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher, Boson localization and the superfluidinsulator transition, Phys. Rev. B 40(1), 546 (1989)
CrossRef
ADS
Google scholar
|
[12] |
D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, Cold bosonic atoms in optical lattices, Phys. Rev. Lett. 81(15), 3108 (1998)
CrossRef
ADS
Google scholar
|
[13] |
M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms, Nature 415(6867), 39 (2002)
CrossRef
ADS
Google scholar
|
[14] |
T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and T. Pfau, The physics of dipolar bosonic quantum gases, Rep. Prog. Phys. 72(12), 126401 (2009)
CrossRef
ADS
Google scholar
|
[15] |
C. Trefzger, C. Menotti, B. Capogrosso-Sansone, and M. Lewenstein, Ultracold dipolar gases in optical lattices, J. Phys. At. Mol. Opt. Phys. 44(19), 193001 (2011)
CrossRef
ADS
Google scholar
|
[16] |
A. Lauer, D. Muth, and M. Fleischhauer, Transportinduced melting of crystals of Rydberg dressed atoms in a one-dimensional lattice, New J. Phys. 14(9), 095009 (2012)
CrossRef
ADS
Google scholar
|
[17] |
P. Schauß, M. Cheneau, M. Endres, T. Fukuhara, S. Hild, A. Omran, T. Pohl, C. Gross, S. Kuhr, and I. Bloch, Observation of spatially ordered structures in a two-dimensional Rydberg gas, Nature 491(7422), 87 (2012)
CrossRef
ADS
Google scholar
|
[18] |
A. Safavi-Naini, S. G. Soyler, G. Pupillo, H. R. Sadeghpour, and B. Capogrosso-Sansone, Quantum phases of dipolar bosons in bilayer geometry, New J. Phys. 15(1), 013036 (2013)
CrossRef
ADS
Google scholar
|
[19] |
E. Altman, W. Hofstetter, E. Demler, and M. D. Lukin, Phase diagram of two-component bosons on an optical lattice, New J. Phys. 5, 113 (2003)
CrossRef
ADS
Google scholar
|
[20] |
P. Soltan-Panahi, D. Lühmann, J. Struck, P. Windpassinger, and K. Sengstock, Quantum phase transition to unconventional multi-orbital superfluidity in optical lattices, Nat. Phys. 8(1), 71 (2012)
|
[21] |
A. Eckardt, P. Hauke, P. Soltan-Panahi, C. Becker, K. Sengstock, and M. Lewenstein, Frustrated quantum antiferromagnetism with ultracold bosons in a triangular lattice, Europhys. Lett. 89(1), 10010 (2010)
CrossRef
ADS
Google scholar
|
[22] |
S. Pielawa, E. Berg, and S. Sachdev, Frustrated quantum Ising spins simulated by spinless bosons in a tilted lattice: From a quantum liquid to antiferromagnetic order, Phys. Rev. B 86(18), 184435 (2012)
CrossRef
ADS
Google scholar
|
[23] |
J. Ye, K. Zhang, Y. Li, Y. Chen, and W. Zhang, Optical Bragg, atomic Bragg and cavity QED detections of quantum phases and excitation spectra of ultracold atoms in bipartite and frustrated optical lattices,Ann. Phys. 328, 103 (2013)
CrossRef
ADS
Google scholar
|
[24] |
S. Peil, J. V. Porto, B. Laburthe Tolra, J. M. Obrecht, B. E. King, M. Subbotin, S. L. Rolston, and W. D. Phillips, Patterned loading of a Bose–Einstein condensate into an optical lattice, Phys. Rev. A 67, 051603(R) (2003)
|
[25] |
J. Sebby-Strabley, M. Anderlini, P. S. Jessen, and J. V. Porto, Lattice of double wells for manipulating pairs of cold atoms, Phys. Rev. A 73(3), 033605 (2006)
CrossRef
ADS
Google scholar
|
[26] |
S. Fölling, S. Trotzky, P. Cheinet, M. Feld, R. Saers, A. Widera, T. Müller, and I. Bloch, Direct observation of second-order atom tunnelling, Nature 448(7157), 1029 (2007)
CrossRef
ADS
Google scholar
|
[27] |
P. Cheinet, S. Trotzky, M. Feld, U. Schnorrberger, M. Moreno-Cardoner, S. Fölling, and I. Bloch, Counting atoms using interaction blockade in an optical superlattice, Phys. Rev. Lett. 101(9), 090404 (2008)
CrossRef
ADS
Google scholar
|
[28] |
G. B. Jo, J. Guzman, C. K. Thomas, P. Hosur, A. Vishwanath, and D. M. Stamper-Kurn, Ultracold atoms in a tunable optical Kagome lattice, Phys. Rev. Lett. 108(4), 045305 (2012)
CrossRef
ADS
Google scholar
|
[29] |
O. Dutta, M. Gajda, P. Hauke, M. Lewenstein, D. S. Lühmann, B. A. Malomed, T. Sowinski, and J. Zakrzewski, Non-standard Hubbard models in optical lattices: A review, Rep. Rrog. Phys. 78(6), 066001 (2015)
CrossRef
ADS
Google scholar
|
[30] |
M. Boninsegni and N. V. Prokof’ev, Supersolids: What and where are they? Rev. Mod. Phys. 84(2), 759 (2012)
CrossRef
ADS
Google scholar
|
[31] |
A. B. Kuklov and B. V. Svistunov, Counterflow superfluidity of two-species ultracold atoms in a commensurate optical lattice, Phys. Rev. Lett. 90(10), 100401 (2003)
CrossRef
ADS
Google scholar
|
[32] |
V. G. Rousseau, D. P. Arovas, M. Rigol, F. Hebert, G. G. Batrouni, and R. T. Scalettar, Exact study of the one-dimensional boson Hubbard model with a superlattice potential, Phys. Rev. B 73(17), 174516 (2006)
CrossRef
ADS
Google scholar
|
[33] |
G. Roux, T. Barthel, I. P. McCulloch, C. Kollath, U. Schollwöck, and T. Giamarchi, Quasiperiodic Bose–Hubbard model and localization in one-dimensional cold atomic gases, Phys. Rev. A 78(2), 023628 (2008)
CrossRef
ADS
Google scholar
|
[34] |
A. Dhar, T. Mishra, R. V. Pai, and B. P. Das, Quantum phases of ultracold bosonic atoms in a one-dimensional optical superlattice, Phys. Rev. A 83(5), 053621 (2011)
CrossRef
ADS
Google scholar
|
[35] |
P. Buonsante and A. Vezzani, Phase diagram for ultracold bosons in optical lattices and superlattices, Phys. Rev. A 70(3), 033608 (2004)
CrossRef
ADS
Google scholar
|
[36] |
J. M. Hou, Quantum phases of ultracold bosonic atoms in a two-dimensional optical superlattice, Mod. Phys. Lett. B 23(01), 25 (2009)
CrossRef
ADS
Google scholar
|
[37] |
B. L. Chen, S. P. Kou, Y. Zhang, and S. Chen, Quantum phases of the Bose–Hubbard model in optical superlattices, Phys. Rev. A 81(5), 053608 (2010)
CrossRef
ADS
Google scholar
|
[38] |
A. Dhar, M. Singh, R. V. Pai, and B. P. Das, Meanfield analysis of quantum phase transitions in a periodic optical superlattice, Phys. Rev. A 84(3), 033631 (2011)
CrossRef
ADS
Google scholar
|
[39] |
P. Buonsante, V. Penna, and A. Vezzani, Analytical mean-field approach to the phase-diagram of ultracold bosons in optical superlattices, Laser Phys. 15(2), 361 (2005)
|
[40] |
D. Muth, A. Mering, and M. Fleischhauer, Ultracold bosons in disordered superlattices: Mott insulators induced by tunneling, Phys. Rev. A 77(4), 043618 (2008)
CrossRef
ADS
Google scholar
|
[41] |
P. Pisarski, R. M. Jones, and R. J. Gooding, Application of a multisite mean-field theory to the disordered Bose–Hubbard model, Phys. Rev. A 83(5), 053608 (2011)
CrossRef
ADS
Google scholar
|
[42] |
T. McIntosh, P. Pisarski, R. J. Gooding, and E. Zaremba, Multisite mean-field theory for cold bosonic atoms in optical lattices, Phys. Rev. A 86(1), 013623 (2012)
CrossRef
ADS
Google scholar
|
[43] |
P. Buonsante and A. Vezzani, Cell strong-coupling perturbative approach to the phase diagram of ultracold bosons in optical superlattices, Phys. Rev. A 72(1), 013614 (2005)
CrossRef
ADS
Google scholar
|
[44] |
P. Buonsante, V. Penna, and A. Vezzani, Phase coherence, visibility, and the superfluid–Mott-insulator transition on one-dimensional optical lattices, Phys. Rev. A 72, 031602(R) (2005)
|
[45] |
Z. Lin, J. Zhang, and Y. Jiang, Analytical approach to quantum phase transitions of ultracold Bose gases in bipartite optical lattices using the generalized Green’s function method, Front. Phys. 13(4), 136401 (2018)
CrossRef
ADS
Google scholar
|
[46] |
J. Zhang and Y. Jiang, Quantum phase diagrams and time-of-flight pictures of spin-1 Bose systems in honeycomb optical lattices, Laser Phys. 26(9), 095501 (2016)
CrossRef
ADS
Google scholar
|
[47] |
F. Wei, J. Zhang, and Y. Jiang, Quantum phase diagram and time-of-flight absorption pictures of an ultracold Bose system in a square optical superlattice, Europhys. Lett. 113, 16004 (2016)
CrossRef
ADS
Google scholar
|
[48] |
T. Wang, X. F. Zhang, S. Eggert, and A. Pelster, Generalized effective-potential Landau theory for bosonic quadratic superlattices, Phys. Rev. A 87(6), 063615 (2013)
CrossRef
ADS
Google scholar
|
[49] |
Z. Lin, J. Zhang, and Y. Jiang, Quantum phase transitions of ultracold Bose systems in nonrectangular optical lattices, Phys. Rev. A 85(2), 023619 (2012)
CrossRef
ADS
Google scholar
|
[50] |
S. Paul and E. Tiesinga, Formation and decay of Bose–Einstein condensates in an excited band of a double-well optical lattice, Phys. Rev. A 88(3), 033615 (2013)
CrossRef
ADS
Google scholar
|
[51] |
F. E. A. dos Santos and A. Pelster, Quantum phase diagram of bosons in optical lattices, Phys. Rev. A 79(1), 013614 (2009)
CrossRef
ADS
Google scholar
|
[52] |
N. Teichmann, D. Hinrichs, M. Holthaus, and A. Eckardt, Process-chain approach to the Bose–Hubbard model: Ground-state properties and phase diagram, Phys. Rev. B 79(22), 224515 (2009)
CrossRef
ADS
Google scholar
|
[53] |
N. Teichmann, D. Hinrichs, and M. Holthaus, Reference data for phase diagrams of triangular and hexagonal bosonic lattices, Europhys. Lett. 91(1), 10004 (2010)
CrossRef
ADS
Google scholar
|
[54] |
M. Iskin, Route to supersolidity for the extended Bose–Hubbard model, Phys. Rev. A 83, 051606(R) (2011)
|
[55] |
M. Di Liberto, T. Comparin, T. Kock, M. Ölschläger, A. Hemmerich, and C. M. Smith, Controlling coherence via tuning of the population imbalance in a bipartite optical lattice, Nat. Commun. 5(1), 5735 (2014)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |