First-principles study of electronic structure and magnetic properties of SrTi1−xMxO3 (M= Cr, Mn, Fe, Co, or Ni)
Xin-Long Dong, Kun-Hua Zhang, Ming-Xiang Xu
First-principles study of electronic structure and magnetic properties of SrTi1−xMxO3 (M= Cr, Mn, Fe, Co, or Ni)
We used first-principles calculations to conduct a comparative study of the structure and the electronic and magnetic properties of SrTiO3 doped with a transition metal (TM), namely, Cr, Mn, Fe, Co, or Ni. The calculated formation energies indicate that compared with Sr, Ti can be substituted more easily by the TM ions. The band structures show that SrTi0.875Cr0.125O3 and SrTi0.875Co0.125O3 are half metals, SrTi0.875Fe0.125O3 is a metal, and SrTi0.875Mn0.125O3 is a semiconductor. The 3d TM-doped SrTiO3 exhibits various magnetic properties, ranging from ferromagnetism (Cr-, Fe-, and Co-doped SrTiO3) to antiferromagnetism (Mn-doped SrTiO3) and nonmagnetism (Ni-doped SrTiO3). The total magnetic moments are 4.0μB, 6.23μB, and 2.0μB for SrTi0.75Cr0.25O3, SrTi0.75Fe0.25O3, and SrTi0.75Co0.25O3, respectively. Room-temperature ferromagnetism can be expected in Cr-, Fe-, and Co-doped SrTiO3, which agrees with the experimental observations. The electronic structure calculations show that the spin polarizations of the 3d states of the TM atoms are responsible for the ferromagnetism in these compounds. The magnetism of TM-doped SrTiO3 is explained by the hybridization between the TM-3d states and the O-2p states.
first-principles calculations / SrTiO3 / electronic structure / ferromagnetism
[1] |
D. D. Cuong, B. Lee, K. M. Choi, H. S. Ahn, S. Han, and J. Lee, Oxygen vacancy clustering and electron localization in oxygen-deficient SrTiO3. LDA+ U study, Phys. Rev. Lett. 98(11), 115503 (2007)
CrossRef
ADS
Google scholar
|
[2] |
N. A. Pertsev, A. K. Tagantsev, and N. Setter, Phase transitions and strain-induced ferroelectricity in SrTiO3 epitaxial thin films, Phys. Rev. B 61(2), R825 (2000)
CrossRef
ADS
Google scholar
|
[3] |
J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, S. Choudhury, W. Tian, M. E. Hawley, B. Craigo, A. K. Tagantsev, X. Q. Pan, S. K. Streiffer, L. Q. Chen, S. W. Kirchoefer, J. Levy, and D. G. Schlom, Room-temperature ferroelectricity in strained SrTiO3, Nature 430(7001), 758 (2004)
CrossRef
ADS
Google scholar
|
[4] |
M. D. Biegalski, Y. Jia, D. G. Schlom, S. Trolier-McKinstry, S. K. Streiffer, V. Sherman, R. Uecker, and P. Reiche, Relaxor ferroelectricity in strained epitaxial SrTiO3 thin films on DyScO3 substrates, Appl. Phys. Lett. 88(19), 192907 (2006)
CrossRef
ADS
Google scholar
|
[5] |
H. M. Zhang, M. An, X. Y. Yao, and S. Dong, Orientation-dependent ferroelectricity of strained Pb- TiO3 films, Front. Phys. 10(6), 107701 (2015)
CrossRef
ADS
Google scholar
|
[6] |
R. N. Song, M. H. Hu, X. R. Chen, and J. D. Guo, Epitaxial growth and thermostability of cubic and hexagonal SrMnO3 films on SrTiO3(111), Front. Phys. 10(3), 106802 (2015)
CrossRef
ADS
Google scholar
|
[7] |
A. Chen, Z. Yu, J. Scott, A. Loidl, R. Guo, A. S. Bhalla, and L. E. Cross, Dielectric polarization processes in Bi. SrTiO3, J. Phys. Chem. Solids 61(2), 191 (2000)
CrossRef
ADS
Google scholar
|
[8] |
M. Itoh, R. Wang, Y. Inaguma, T. Yamaguchi, Y. J. Shan, and T. Nakamura, Ferroelectricity induced by oxygen isotope exchange in strontium titanate perovskite, Phys. Rev. Lett. 82(17), 3540 (1999)
CrossRef
ADS
Google scholar
|
[9] |
I. Hase, T. Saitoh, and T. Katsufuji, Ab initiocalculation of charge- and spin-controlled Sr1−x−yLax+yTi1−xCrxO3, J. Magn. Magn. Mater. 310(2), e281 (2007)
CrossRef
ADS
Google scholar
|
[10] |
H. Nakayama and H. Katayama-Yoshida, Theoretical prediction of magnetic properties of Ba(Ti1−xMx)O3 (M= Sc, V, Cr, Mn, Fe, Co, Ni, Cu), Jpn. J. Appl. Phys. 40(2), L1355 (2001)
CrossRef
ADS
Google scholar
|
[11] |
J. S. Lee, Z. G. Khim, Y. D. Park, D. P. Norton, N. A. Theodoropoulou, A. F. Hebard, J. D. Budai, L. A. Boatner, S. J. Pearton, and R. G. Wilson, Magnetic properties of Co- and Mn-implanted BaTiO3, SrTiO3 and KTaO3, Solid-State Electron. 47(12), 2225 (2003)
CrossRef
ADS
Google scholar
|
[12] |
S. Y. Zhang, Y. H. Lin, C. W. Nan, R. Zhao, and J. He, Magnetic and electrical properties of (Mn, La)-codoped SrTiO3 thin films, J. Am. Ceram. Soc. 91(10), 3263 (2008)
CrossRef
ADS
Google scholar
|
[13] |
H. S. Kim, L. Bi, G. F. Dionne, and C. A. Ross, Magnetic and magneto-optical properties of Fe-doped Sr- TiO3 films, Appl. Phys. Lett. 93(9), 092506 (2008)
CrossRef
ADS
Google scholar
|
[14] |
D. H. Kim, N. M. Aimon, L. Bi, G. F. Dionne, and C. A. Ross, The role of deposition conditions on the structure and magnetic properties of SrTi1−xFexO3 films, J. Appl. Phys. 111(7), 07A918 (2012)
|
[15] |
Y. G. Zhao, S. R. Shinde, S. B. Ogale, J. Higgins, R. J. Choudhary, V. N. Kulkarni, R. L. Greene, T. Venkatesan, S. E. Lofland, C. Lanci, J. P. Buban, N. D. Browning, S. Das Sarma, and A. J. Millis, Co-doped La0.5Sr0.5TiO3−d. Diluted magnetic oxide system with high Curie temperature, Appl. Phys. Lett. 83(11), 2199 (2003)
CrossRef
ADS
Google scholar
|
[16] |
L. Bi, H. S. Kim, G. F. Dionne, and C. A. Ross, Structure, magnetic properties and magnetoelastic anisotropy in epitaxial Sr(Ti1−xCox)O3 films, New J. Phys. 12(4), 043044 (2010)
CrossRef
ADS
Google scholar
|
[17] |
D. Yao, X. Zhou, and S. Ge, Raman scattering and room temperature ferromagnetism in Co-doped SrTiO3 particles, Appl. Surf. Sci. 257(22), 9233 (2011)
CrossRef
ADS
Google scholar
|
[18] |
G. Kresse and J. Hafner, Ab initio molecular dynamics for open-shell transition metals, Phys. Rev. B 48(17), 13115 (1993)
CrossRef
ADS
Google scholar
|
[19] |
G. Kresse and J. Furthmuller, Efficiency of ab-initiototal energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
CrossRef
ADS
Google scholar
|
[20] |
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef
ADS
Google scholar
|
[21] |
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
CrossRef
ADS
Google scholar
|
[22] |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef
ADS
Google scholar
|
[23] |
H. J. Monkhorst and J. D. Pack, Special points for Brillonin-zone integrations, Phys. Rev. B 13(12), 5188 (1976)
CrossRef
ADS
Google scholar
|
[24] |
Y. Zhang, J. Hu, E. Cao, L. Sun, and H. Qin, Vacancy induced magnetism in SrTiO3, J. Magn. Magn. Mater. 324(10), 1770 (2012)
CrossRef
ADS
Google scholar
|
[25] |
F. Li, K. Yu, L. L. Lou, Z. Su, and S. Liu, Theoretical and experimental study of La/Ni co-doped SrTiO3 photocatalyst, Mater. Sci. Eng. B 172(2), 136 (2010)
CrossRef
ADS
Google scholar
|
[26] |
C. Zhang, C. L. Wang, J. C. Li, K. Yang, Y. F. Zhang, and Q. Z. Wu, Substitutional position and insulatorto- metal transition in Nb-doped SrTiO3, Mater. Chem. Phys. 107(2–3), 215 (2008)
CrossRef
ADS
Google scholar
|
[27] |
C. Yang, T. Liu, Z. Cheng, H. Gan, and J. Chen, Study on Mn-doped SrTiO3 with first principle calculation, Physica B 407(5), 844 (2012)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |