First-principles study of electronic structure and magnetic properties of SrTi1−xMxO3 (M= Cr, Mn, Fe, Co, or Ni)

Xin-Long Dong, Kun-Hua Zhang, Ming-Xiang Xu

PDF(3745 KB)
PDF(3745 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (5) : 137106. DOI: 10.1007/s11467-018-0807-x
RESEARCH ARTICLE
RESEARCH ARTICLE

First-principles study of electronic structure and magnetic properties of SrTi1−xMxO3 (M= Cr, Mn, Fe, Co, or Ni)

Author information +
History +

Abstract

We used first-principles calculations to conduct a comparative study of the structure and the electronic and magnetic properties of SrTiO3 doped with a transition metal (TM), namely, Cr, Mn, Fe, Co, or Ni. The calculated formation energies indicate that compared with Sr, Ti can be substituted more easily by the TM ions. The band structures show that SrTi0.875Cr0.125O3 and SrTi0.875Co0.125O3 are half metals, SrTi0.875Fe0.125O3 is a metal, and SrTi0.875Mn0.125O3 is a semiconductor. The 3d TM-doped SrTiO3 exhibits various magnetic properties, ranging from ferromagnetism (Cr-, Fe-, and Co-doped SrTiO3) to antiferromagnetism (Mn-doped SrTiO3) and nonmagnetism (Ni-doped SrTiO3). The total magnetic moments are 4.0μB, 6.23μB, and 2.0μB for SrTi0.75Cr0.25O3, SrTi0.75Fe0.25O3, and SrTi0.75Co0.25O3, respectively. Room-temperature ferromagnetism can be expected in Cr-, Fe-, and Co-doped SrTiO3, which agrees with the experimental observations. The electronic structure calculations show that the spin polarizations of the 3d states of the TM atoms are responsible for the ferromagnetism in these compounds. The magnetism of TM-doped SrTiO3 is explained by the hybridization between the TM-3d states and the O-2p states.

Keywords

first-principles calculations / SrTiO3 / electronic structure / ferromagnetism

Cite this article

Download citation ▾
Xin-Long Dong, Kun-Hua Zhang, Ming-Xiang Xu. First-principles study of electronic structure and magnetic properties of SrTi1−xMxO3 (M= Cr, Mn, Fe, Co, or Ni). Front. Phys., 2018, 13(5): 137106 https://doi.org/10.1007/s11467-018-0807-x

References

[1]
D. D. Cuong, B. Lee, K. M. Choi, H. S. Ahn, S. Han, and J. Lee, Oxygen vacancy clustering and electron localization in oxygen-deficient SrTiO3. LDA+ U study, Phys. Rev. Lett. 98(11), 115503 (2007)
CrossRef ADS Google scholar
[2]
N. A. Pertsev, A. K. Tagantsev, and N. Setter, Phase transitions and strain-induced ferroelectricity in SrTiO3 epitaxial thin films, Phys. Rev. B 61(2), R825 (2000)
CrossRef ADS Google scholar
[3]
J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, S. Choudhury, W. Tian, M. E. Hawley, B. Craigo, A. K. Tagantsev, X. Q. Pan, S. K. Streiffer, L. Q. Chen, S. W. Kirchoefer, J. Levy, and D. G. Schlom, Room-temperature ferroelectricity in strained SrTiO3, Nature 430(7001), 758 (2004)
CrossRef ADS Google scholar
[4]
M. D. Biegalski, Y. Jia, D. G. Schlom, S. Trolier-McKinstry, S. K. Streiffer, V. Sherman, R. Uecker, and P. Reiche, Relaxor ferroelectricity in strained epitaxial SrTiO3 thin films on DyScO3 substrates, Appl. Phys. Lett. 88(19), 192907 (2006)
CrossRef ADS Google scholar
[5]
H. M. Zhang, M. An, X. Y. Yao, and S. Dong, Orientation-dependent ferroelectricity of strained Pb- TiO3 films, Front. Phys. 10(6), 107701 (2015)
CrossRef ADS Google scholar
[6]
R. N. Song, M. H. Hu, X. R. Chen, and J. D. Guo, Epitaxial growth and thermostability of cubic and hexagonal SrMnO3 films on SrTiO3(111), Front. Phys. 10(3), 106802 (2015)
CrossRef ADS Google scholar
[7]
A. Chen, Z. Yu, J. Scott, A. Loidl, R. Guo, A. S. Bhalla, and L. E. Cross, Dielectric polarization processes in Bi. SrTiO3, J. Phys. Chem. Solids 61(2), 191 (2000)
CrossRef ADS Google scholar
[8]
M. Itoh, R. Wang, Y. Inaguma, T. Yamaguchi, Y. J. Shan, and T. Nakamura, Ferroelectricity induced by oxygen isotope exchange in strontium titanate perovskite, Phys. Rev. Lett. 82(17), 3540 (1999)
CrossRef ADS Google scholar
[9]
I. Hase, T. Saitoh, and T. Katsufuji, Ab initiocalculation of charge- and spin-controlled Sr1−x−yLax+yTi1−xCrxO3, J. Magn. Magn. Mater. 310(2), e281 (2007)
CrossRef ADS Google scholar
[10]
H. Nakayama and H. Katayama-Yoshida, Theoretical prediction of magnetic properties of Ba(Ti1−xMx)O3 (M= Sc, V, Cr, Mn, Fe, Co, Ni, Cu), Jpn. J. Appl. Phys. 40(2), L1355 (2001)
CrossRef ADS Google scholar
[11]
J. S. Lee, Z. G. Khim, Y. D. Park, D. P. Norton, N. A. Theodoropoulou, A. F. Hebard, J. D. Budai, L. A. Boatner, S. J. Pearton, and R. G. Wilson, Magnetic properties of Co- and Mn-implanted BaTiO3, SrTiO3 and KTaO3, Solid-State Electron. 47(12), 2225 (2003)
CrossRef ADS Google scholar
[12]
S. Y. Zhang, Y. H. Lin, C. W. Nan, R. Zhao, and J. He, Magnetic and electrical properties of (Mn, La)-codoped SrTiO3 thin films, J. Am. Ceram. Soc. 91(10), 3263 (2008)
CrossRef ADS Google scholar
[13]
H. S. Kim, L. Bi, G. F. Dionne, and C. A. Ross, Magnetic and magneto-optical properties of Fe-doped Sr- TiO3 films, Appl. Phys. Lett. 93(9), 092506 (2008)
CrossRef ADS Google scholar
[14]
D. H. Kim, N. M. Aimon, L. Bi, G. F. Dionne, and C. A. Ross, The role of deposition conditions on the structure and magnetic properties of SrTi1−xFexO3 films, J. Appl. Phys. 111(7), 07A918 (2012)
[15]
Y. G. Zhao, S. R. Shinde, S. B. Ogale, J. Higgins, R. J. Choudhary, V. N. Kulkarni, R. L. Greene, T. Venkatesan, S. E. Lofland, C. Lanci, J. P. Buban, N. D. Browning, S. Das Sarma, and A. J. Millis, Co-doped La0.5Sr0.5TiO3−d. Diluted magnetic oxide system with high Curie temperature, Appl. Phys. Lett. 83(11), 2199 (2003)
CrossRef ADS Google scholar
[16]
L. Bi, H. S. Kim, G. F. Dionne, and C. A. Ross, Structure, magnetic properties and magnetoelastic anisotropy in epitaxial Sr(Ti1−xCox)O3 films, New J. Phys. 12(4), 043044 (2010)
CrossRef ADS Google scholar
[17]
D. Yao, X. Zhou, and S. Ge, Raman scattering and room temperature ferromagnetism in Co-doped SrTiO3 particles, Appl. Surf. Sci. 257(22), 9233 (2011)
CrossRef ADS Google scholar
[18]
G. Kresse and J. Hafner, Ab initio molecular dynamics for open-shell transition metals, Phys. Rev. B 48(17), 13115 (1993)
CrossRef ADS Google scholar
[19]
G. Kresse and J. Furthmuller, Efficiency of ab-initiototal energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
CrossRef ADS Google scholar
[20]
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef ADS Google scholar
[21]
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
CrossRef ADS Google scholar
[22]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[23]
H. J. Monkhorst and J. D. Pack, Special points for Brillonin-zone integrations, Phys. Rev. B 13(12), 5188 (1976)
CrossRef ADS Google scholar
[24]
Y. Zhang, J. Hu, E. Cao, L. Sun, and H. Qin, Vacancy induced magnetism in SrTiO3, J. Magn. Magn. Mater. 324(10), 1770 (2012)
CrossRef ADS Google scholar
[25]
F. Li, K. Yu, L. L. Lou, Z. Su, and S. Liu, Theoretical and experimental study of La/Ni co-doped SrTiO3 photocatalyst, Mater. Sci. Eng. B 172(2), 136 (2010)
CrossRef ADS Google scholar
[26]
C. Zhang, C. L. Wang, J. C. Li, K. Yang, Y. F. Zhang, and Q. Z. Wu, Substitutional position and insulatorto- metal transition in Nb-doped SrTiO3, Mater. Chem. Phys. 107(2–3), 215 (2008)
CrossRef ADS Google scholar
[27]
C. Yang, T. Liu, Z. Cheng, H. Gan, and J. Chen, Study on Mn-doped SrTiO3 with first principle calculation, Physica B 407(5), 844 (2012)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(3745 KB)

Accesses

Citations

Detail

Sections
Recommended

/