Quantum anomalous Hall effect and giant Rashba spin-orbit splitting in graphene system co-doped with boron and 5d transition-metal atoms
Xinzhou Deng, Hualing Yang, Shifei Qi, Xiaohong Xu, Zhenhua Qiao
Quantum anomalous Hall effect and giant Rashba spin-orbit splitting in graphene system co-doped with boron and 5d transition-metal atoms
Quantum anomalous Hall effect (QAHE) is a fundamental quantum transport phenomenon in condensed matter physics. Until now, the QAHE has only been experimentally realized for Cr/V-doped (Bi, Sb)2Te3 but at an extremely low observational temperature, thereby limiting its potential application in dissipationless quantum electronics. By employing first-principles calculations, we study the electronic structures of graphene co-doped with 5d transition metal and boron atoms based on a compensated n–p co-doping scheme. Our findings are as follows: i) The electrostatic attraction between the n- and p-type dopants effectively enhances the adsorption of metal adatoms and suppresses their undesirable clustering. ii) Hf-B and Os-B co-doped graphene systems can establish long-range ferromagnetic order and open larger nontrivial band gaps because of the stronger spin-orbit coupling with the non-vanishing Berry curvatures to host the high-temperature QAHE. iii) The calculated Rashba splitting energies in Re–B and Pt–B co-doped graphene systems can reach up to 158 and 85 meV, respectively, which are several orders of magnitude higher than the reported intrinsic spin-orbit coupling strength.
graphene / quantum anomalous Hall effect / spin-orbit coupling
[1] |
F. D. M. Haldane, Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “Parity anomaly”, Phys. Rev. Lett. 61(18), 2015 (1988)
CrossRef
ADS
Google scholar
|
[2] |
H. Weng, R. Yu, X. Hu, X. Dai, and Z. Fang, Quantum anomalous Hall effect and related topological electronic states, Adv. Phys. 64(3), 227 (2015)
CrossRef
ADS
Google scholar
|
[3] |
Y. F. Ren, Z. H. Qiao, and Q. Niu, Topological phases in two-dimensional materials: A review, Rep. Prog. Phys. 79(6), 066501 (2016)
CrossRef
ADS
Google scholar
|
[4] |
C. X. Liu, S. C. Zhang, and X. L. Qi, The quantum anomalous Hall effect: Theory and experiment, Annu. Rev. Condens. Matter Phys. 7(1), 301 (2016)
CrossRef
ADS
Google scholar
|
[5] |
C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Quantum anomalous Hall effect in Hg1−yMny Te quantum wells, Phys. Rev. Lett. 101(14), 146802 (2008)
CrossRef
ADS
Google scholar
|
[6] |
R. Yu, W. Zhang, H. J. Zhang, S. C. Zhang, X. Dai, and Z. Fang, Quantized anomalous Hall effect in magnetic topological insulators, Science 329(5987), 61 (2010)
CrossRef
ADS
Google scholar
|
[7] |
M. Ezawa, Valley-polarized metals and quantum anomalous Hall effect in silicene, Phys. Rev. Lett. 109(5), 055502 (2012)
CrossRef
ADS
Google scholar
|
[8] |
J. Y. Zhang, B. Zhao, and Z. Q. Yang, Abundant topological states in silicene with transition metal adatoms, Phys. Rev. B 88(16), 165422 (2013)
CrossRef
ADS
Google scholar
|
[9] |
X. L. Zhang, L. F. Liu, and W. M. Liu, Quantum anomalous Hall effect and tunable topological states in 3d transition metals doped silicene, Sci. Rep. 3(1), 2908 (2013)
CrossRef
ADS
Google scholar
|
[10] |
M. Yang, X. L. Zhang, and W. M. Liu, Tunable topological quantum states in three- and two-dimensional materials, Front. Phys. 10(2), 108102 (2015)
CrossRef
ADS
Google scholar
|
[11] |
C. C. Liu, J. J. Zhou, and Y. G. Yao, Valley-polarized quantum anomalous Hall phases and tunable topological phase transitions in half-hydrogenated Bi honeycomb monolayers, Phys. Rev. B 91(16), 165430 (2015)
CrossRef
ADS
Google scholar
|
[12] |
Z. H. Qiao, S. Y. Yang, W. X. Feng, W.-K. Tse, J. Ding, Y. G. Yao, J. Wang, and Q. Niu, Quantum anomalous Hall effect in graphene from Rashba and exchange effects, Phys. Rev. B 82, 161414(R) (2010)
|
[13] |
Z. H. Qiao, H. Jiang, X. Li, Y. G. Yao, and Q. Niu, Microscopic theory of quantum anomalous Hall effect in graphene, Phys. Rev. B 85(11), 115439 (2012)
CrossRef
ADS
Google scholar
|
[14] |
J. Ding, Z. H. Qiao, W. X. Feng, Y. G. Yao, and Q. Niu, Engineering quantum anomalous/valley Hall states in graphene via metal-atom adsorption: An ab-initiostudy, Phys. Rev. B 84(19), 195444 (2011)
CrossRef
ADS
Google scholar
|
[15] |
H. B. Zhang, C. Lazo, S. Blügel, S. Heinze, and Y. Mokrousov, Electrically tunable quantum anomalous Hall effect in graphene decorated by 5d transition-metal adatoms, Phys. Rev. Lett. 108(5), 056802 (2012)
CrossRef
ADS
Google scholar
|
[16] |
Z. H. Qiao, W. Ren, H. Chen, L. Bellaiche, Z. Y. Zhang, A. H. MacDonald, and Q. Niu, Quantum anomalous Hall effect in graphene proximity coupled to an antiferromagnetic insulator, Phys. Rev. Lett. 112(11), 116404 (2014)
CrossRef
ADS
Google scholar
|
[17] |
A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6(3), 183 (2007)
CrossRef
ADS
Google scholar
|
[18] |
L. J. Yin, K. K. Bai, W. X. Wang, S. Y. Li, Y. Zhang, and L. He, Landau quantization of Dirac fermions in graphene and its multilayers, Front. Phys. 12(4), 127208 (2017)
CrossRef
ADS
Google scholar
|
[19] |
Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)
CrossRef
ADS
Google scholar
|
[20] |
Y. S. Hor, P. Roushan, H. Beidenkopf, J. Seo, D. Qu, J. G. Checkelsky, L. A. Wray, D. Hsieh, Y. Xia, S. Y. Xu, D. Qian, M. Z. Hasan, N. P. Ong, A. Yazdani, and R. J. Cava, Development of ferromagnetism in the doped topological insulator Bi2−xMnxTe3, Phys. Rev. B 81(19), 195203 (2010)
CrossRef
ADS
Google scholar
|
[21] |
C. Niu, Y. Dai, M. Guo, W. Wei, Y. Ma, and B. Huang, Mn induced ferromagnetism and modulated topological surface states in Bi2Te3, Appl. Phys. Lett. 98(25), 252502 (2011)
CrossRef
ADS
Google scholar
|
[22] |
P. P. J. Haazen, J. B. Laloë, T. J. Nummy, H. J. M. Swagten, P. Jarillo-Herrero, D. Heiman, and J. S. Moodera, Ferromagnetism in thin-film Cr-doped topological insulator Bi2Se3, Appl. Phys. Lett. 100(8), 082404 (2012)
CrossRef
ADS
Google scholar
|
[23] |
T. Jungwirth, J. Sinova, J. Masek, J. Kucera, and A. H. MacDonald, Theory of ferromagnetic (III,Mn)V semiconductors, Rev. Mod. Phys. 78(3), 809 (2006)
CrossRef
ADS
Google scholar
|
[24] |
C. Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L. L. Wang, Z. Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S. C. Zhang, K. He, Y. Wang, L. Lu, X. C. Ma, and Q. K. Xue, Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator, Science 340(6129), 167 (2013)
CrossRef
ADS
Google scholar
|
[25] |
J. G. Checkelsky, R. Yoshimi, A. Tsukazaki, K. S. Takahashi, Y. Kozuka, J. Falson, M. Kawasaki, and Y. Tokura, Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator, Nat. Phys. 10(10), 731 (2014)
|
[26] |
X. Kou, S. T. Guo, Y. Fan, L. Pan, M. Lang, Y. Jiang, Q. Shao, T. Nie, K. Murata, J. Tang, Y. Wang, L. He, T. K. Lee, W. L. Lee, and K. L. Wang, Scale-invariant quantum anomalous Hall effect in magnetic topological insulators beyond the two-dimensional limit, Phys. Rev. Lett. 113(13), 137201 (2014)
CrossRef
ADS
Google scholar
|
[27] |
C. Z. Chang, W. Zhao, D. Y. Kim, H. Zhang, B. A. Assaf, D. Heiman, S. C. Zhang, C. Liu, M. H. W. Chan, and J. S. Moodera, High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator, Nat. Mater. 14(5), 473 (2015)
CrossRef
ADS
Google scholar
|
[28] |
S. F. Qi, Z. H. Qiao, X. Z. Deng, E. D. Cubuk, H. Chen, W. G. Zhu, E. Kaxiras, S. B. Zhang, X. H. Xu, and Z. Y. Zhang, High-temperature quantum anomalous Hall effect in n–p codoped topological insulators, Phys. Rev. Lett. 117(5), 056804 (2016)
CrossRef
ADS
Google scholar
|
[29] |
Y. Ou, C. Liu, G. Y. Jiang, Y. Feng, D. Y. Zhao, W. X. Wu, X. X. Wang, W. Li, C. L. Song, L. L. Wang, W. B. Wang, W. D. Wu, Y. Y. Wang, K. He, X. C. Ma, and Q. K. Xue, Enhancing the quantum anomalous Hall effect by magnetic codoping in a topological insulator, Adv. Mater. 30(1), 1703062 (2018)
CrossRef
ADS
Google scholar
|
[30] |
Y. G. Yao, F. Ye, X. L. Qi, S. C. Zhang, and Z. Fang, Spin-orbit gap of graphene: First-principles calculations, Phys. Rev. B 75(4), 041401 (2007)
CrossRef
ADS
Google scholar
|
[31] |
M. Gmitra, S. Konschuh, C. Ertler, C. Ambrosch-Draxl, and J. Fabian, Band-structure topologies of graphene: Spin-orbit coupling effects from first principles, Phys. Rev. B 80(23), 235431 (2009)
CrossRef
ADS
Google scholar
|
[32] |
A. H. Castro Neto and F. Guinea, Impurity-induced spin-orbit coupling in graphene, Phys. Rev. Lett. 103(2), 026804 (2009)
CrossRef
ADS
Google scholar
|
[33] |
J. Hu, J. Alicea, R. Q. Wu, and M. Franz, Giant topological insulator gap in graphene with 5 d adatoms, Phys. Rev. Lett. 109(26), 266801 (2012)
CrossRef
ADS
Google scholar
|
[34] |
H. Jiang, Z. Qiao, H. Liu, J. Shi, and Q. Niu, Stabilizing topological phases in graphene via random adsorption, Phys. Rev. Lett. 109(11), 116803 (2012)
CrossRef
ADS
Google scholar
|
[35] |
T. Eelbo, M. Waśniowska, P. Thakur, M. Gyamfi, B. Sachs, T. O. Wehling, S. Forti, U. Starke, C. Tieg, A. I. Lichtenstein, and R. Wiesendanger, Adatoms and clusters of 3 d transition metals on graphene: Electronic and magnetic configurations, Phys. Rev. Lett. 110(13), 136804 (2013)
CrossRef
ADS
Google scholar
|
[36] |
H. Chen, Q. Niu, Z. Y. Zhang, and A. H. MacDonald, Gate-tunable exchange coupling between cobalt clusters on graphene,Phys. Rev. B 87(14), 144410 (2013)
CrossRef
ADS
Google scholar
|
[37] |
J. L. Ge, T. R. Wu, M. Gao, Z. B. Bai, L. Cao, X. F. Wang, Y. Y. Qin, and F. Q. Song, Weak localization of bismuth cluster-decorated graphene and its spin–orbit interaction, Front. Phys. 12(4), 127210 (2017)
CrossRef
ADS
Google scholar
|
[38] |
S. F. Qi, H. Chen, X. H. Xu, and Z. Y. Zhang, Diluted ferromagnetic graphene by compensated n–p codoping, Carbon 61, 609 (2013)
CrossRef
ADS
Google scholar
|
[39] |
X. Y. Zhang, S. F. Qi, and X. H. Xu, Long-range and strong ferromagnetic graphene by compensated n–p codoping and p–p stacking, Carbon 95, 65 (2015)
CrossRef
ADS
Google scholar
|
[40] |
R. Zhang, Y. Luo, S. Qi, and X. Xu, Long-range ferromagnetic graphene via compensated Fe/NO2 co-doping, Appl. Surf. Sci. 305, 768 (2014)
CrossRef
ADS
Google scholar
|
[41] |
X. Z. Deng, S. F. Qi, Y. L. Han, K. H. Zhang, X. H. Xu, and Z. H. Qiao, Realization of quantum anomalous Hall effect in graphene from n–p codoping-induced stable atomic adsorption, Phys. Rev. B 95(12), 121410 (2017)
CrossRef
ADS
Google scholar
|
[42] |
T. Yamamoto, H. Katayama, and Yoshida, Solution using a codoping method to unipolarity for the fabrication of p-type ZnO, Jpn. J. Appl. Phys. 38(Part 2, No. 2B), L166 (1999)
|
[43] |
L. G. Wang and A. Zunger, Cluster-doping approach for wide-gap semiconductors: The case of p-type ZnO, Phys. Rev. Lett. 90(25), 256401 (2003)
CrossRef
ADS
Google scholar
|
[44] |
Y. Gai, J. B. Li, S. S. Li, J. B. Xia, and S. H. Wei, Design of narrow-gap TiO2: A passivated codoping approach for enhanced photoelectrochemical activity, Phys. Rev. Lett. 102(3), 036402 (2009)
CrossRef
ADS
Google scholar
|
[45] |
W. G. Zhu, X. F. Qiu, V. Iancu, X. Q. Chen, H. Pan, W. Wang, N. M. Dimitrijevic, T. Rajh, M. P. Meyer, G. M. Paranthaman, H. H. Stocks, B. H. Weitering, G. Gu, Eres, and Z. Y. Zhang, Band gap narrowing of titanium oxide semiconductors by noncompensated anion-cation codoping for enhanced visible-light photoactivity, Phys. Rev. Lett. 103(22), 226401 (2009)
CrossRef
ADS
Google scholar
|
[46] |
X. H. Xu, H. J. Blythe, M. Ziese, A. J. Behan, J. R. Neal, A. Mokhtari, R. M. Ibrahim, A. M. Fox, and G. A. Gehring, Carrier-induced ferromagnetism in n-type ZnMnAlO and ZnCoAlO thin films at room temperature, New J. Phys. 8(8), 135 (2006)
CrossRef
ADS
Google scholar
|
[47] |
W. G. Zhu, Z. Y. Zhang, and E. Kaxiras, Dopantassisted concentration enhancement of substitutional Mn in Si and Ge, Phys. Rev. Lett. 100(2), 027205 (2008)
CrossRef
ADS
Google scholar
|
[48] |
S. Agnoli and M. Favaro, Doping graphene with boron: A review of synthesis methods, physicochemical characterization, and emerging applications, J. Mater. Chem. A 4(14), 5002 (2016)
CrossRef
ADS
Google scholar
|
[49] |
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef
ADS
Google scholar
|
[50] |
G. Kresse and J. Hafner, Ab initiomoleculardynamics simulation of the liquid-metal–amorphoussemiconductor transition in germanium, Phys. Rev. B 49(20), 14251 (1994)
CrossRef
ADS
Google scholar
|
[51] |
Y. G. Yao, L. Kleinman, A. H. MacDonald, J. Sinova, T. Jungwirth, D. S. Wang, E. Wang, and Q. Niu, First principles calculation of anomalous Hall conductivity in ferromagnetic bcc Fe, Phys. Rev. Lett. 92(3), 037204 (2004)
CrossRef
ADS
Google scholar
|
[52] |
D. Xiao, M. C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82(3), 1959 (2010)
CrossRef
ADS
Google scholar
|
[53] |
G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47(1), 558 (1993)
CrossRef
ADS
Google scholar
|
[54] |
G. Kresse and J. Furthmüller, Efficiency of ab-initiototal energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
CrossRef
ADS
Google scholar
|
[55] |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef
ADS
Google scholar
|
[56] |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)], Phys. Rev. Lett. 78(7), 1396 (1997)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |