Cross and joint ordinal partition transition networks for multivariate time series analysis

Heng Guo, Jia-Yang Zhang, Yong Zou, Shu-Guang Guan

PDF(12303 KB)
PDF(12303 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (5) : 130508. DOI: 10.1007/s11467-018-0805-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Cross and joint ordinal partition transition networks for multivariate time series analysis

Author information +
History +

Abstract

We propose the construction of cross and joint ordinal pattern transition networks from multivariate time series for two coupled systems, where synchronizations are often present. In particular, we focus on phase synchronization, which is a prototypical scenario in dynamical systems. We systematically show that cross and joint ordinal pattern transition networks are sensitive to phase synchronization. Furthermore, we find that some particular missing ordinal patterns play crucial roles in forming the detailed structures in the parameter space, whereas the calculations of permutation entropy measures often do not. We conclude that cross and joint ordinal partition transition network approaches provide complementary insights into the traditional symbolic analysis of synchronization transitions.

Keywords

nonlinear time series analysis / complex networks / ordinal pattern partition / transition network / phase synchronization

Cite this article

Download citation ▾
Heng Guo, Jia-Yang Zhang, Yong Zou, Shu-Guang Guan. Cross and joint ordinal partition transition networks for multivariate time series analysis. Front. Phys., 2018, 13(5): 130508 https://doi.org/10.1007/s11467-018-0805-0

References

[1]
R. V. Donner, M. Small, J. F. Donges, N. Marwan, Y. Zou, R. Xiang, and J. Kurths, Recurrence-based time series analysis by means of complex network methods, Int. J. Bifurcat. Chaos 21(04), 1019 (2011)
CrossRef ADS Google scholar
[2]
R. V. Donner, Y. Zou, J. F. Donges, N. Marwan, and J. Kurths, Recurrence networks – A novel paradigm for nonlinear time series analysis, New J. Phys. 12(3), 033025 (2010)
CrossRef ADS Google scholar
[3]
N. Marwan, J. F. Donges, Y. Zou, R. V. Donner, and J. Kurths, Complex network approach for recurrence analysis of time series, Phys. Lett. A 373(46), 4246 (2009)
CrossRef ADS Google scholar
[4]
L. Lacasa, B. Luque, F. Ballesteros, J. Luque, and J. C. Nuno, From time series to complex networks: The visibility graph, Proc. Natl. Acad. Sci. USA 105(13), 4972 (2008)
CrossRef ADS Google scholar
[5]
J. Zhang and M. Small, Complex network from pseudoperiodic time series: Topology versus dynamics, Phys. Rev. Lett. 96(23), 238701 (2006)
CrossRef ADS Google scholar
[6]
Y. Yang and H. Yang, Complex network-based time series analysis, Physica A 387(5–6), 1381 (2008)
CrossRef ADS Google scholar
[7]
J. F. Donges, R. V. Donner, M. H. Trauth, N. Marwan, H. J. Schellnhuber, and J. Kurths, Nonlinear detection of paleoclimate-variability transitions possibly related to human evolution, Proc. Natl. Acad. Sci. USA 108(51), 20422 (2011)
CrossRef ADS Google scholar
[8]
Y. Zou, R. V. Donner, M. Wickramasinghe, I. Z. Kiss, M. Small, and J. Kurths, Phase coherence and attractor geometry of chaotic electrochemical oscillators, Chaos 22(3), 033130 (2012)
CrossRef ADS Google scholar
[9]
Z. K. Gao, W. D. Dang, Y. X. Yang, and Q. Cai, Multiplex multivariate recurrence network from multichannel signals for revealing oil-water spatial flow behavior, Chaos 27(3), 035809 (2017)
CrossRef ADS Google scholar
[10]
J. B. Elsner, T. H. Jagger, and E. A. Fogarty, Visibility network of united states hurricanes, Geophys. Res. Lett. 36(16), L16702 (2009)
CrossRef ADS Google scholar
[11]
Y. Zou, M. Small, Z. Liu, and J. Kurths, Complex network approach to characterize the statistical features of the sunspot series, New J. Phys. 16(1), 013051 (2014)
CrossRef ADS Google scholar
[12]
Y. Zou, R. Donner, N. Marwan, M. Small, and J. Kurths, Long-term changes in the north-south asymmetry of solar activity: A nonlinear dynamics characterization using visibility graphs, Nonlinear Process. Geophys. 21(6), 1113 (2014)
CrossRef ADS Google scholar
[13]
R. Zhang, Y. Zou, J. Zhou, Z. K. Gao, and S. Guan, Visibility graph analysis for re-sampled time series from auto-regressive stochastic processes, Commun. Nonlinear Sci. Numer. Simul. 42, 396 (2017)
CrossRef ADS Google scholar
[14]
Z. Czechowski, M. Lovallo, and L. Telesca, Multifractal analysis of visibility graph-based Ito-related connectivity time series, Chaos 26(2), 023118 (2016)
CrossRef ADS Google scholar
[15]
C. Zhang, Y. Chen, and G. Hu, Network reconstructions with partially available data, Front. Phys. 12(3), 128906 (2017)
CrossRef ADS Google scholar
[16]
Z. Q. Jiang, Y. H. Yang, G. J. Wang, and W. X. Zhou, Joint multifractal analysis based on wavelet leaders, Front. Phys. 12(6), 128907 (2017)
CrossRef ADS Google scholar
[17]
R. V. Donner, J. Heitzig, J. F. Donges, Y. Zou, N. Marwan, and J. Kurths, The geometry of chaotic dynamics — A complex network perspective, Eur. Phys. J. B 84(4), 653 (2011)
CrossRef ADS Google scholar
[18]
M. McCullough, M. Small, T. Stemler, and H. H. C. Iu, Time lagged ordinal partition networks for capturing dynamics of continuous dynamical systems, Chaos 25(5), 053101 (2015)
CrossRef ADS Google scholar
[19]
C. W. Kulp, J. M. Chobot, H. R. Freitas, and G. D. Sprechini, Using ordinal partition transition networks to analyze ECG data, Chaos 26(7), 073114 (2016)
CrossRef ADS Google scholar
[20]
C. W. Kulp, J. M. Chobot, B. J. Niskala, and C. J. Needhammer, Using forbidden ordinal patterns to detect determinism in irregularly sampled time series, Chaos 26(2), 023107 (2016)
CrossRef ADS Google scholar
[21]
M. McCullough, K. Sakellariou, T. Stemler, and M. Small, Counting forbidden patterns in irregularly sampled time series (i): The effects of under-sampling, random depletion, and timing jitter, Chaos 26(12), 123103 (2016)
CrossRef ADS Google scholar
[22]
K. Sakellariou, M. McCullough, T. Stemler, and M. Small, Counting forbidden patterns in irregularly sampled time series (ii): Reliability in the presence of highly irregular sampling, Chaos 26(12), 123104 (2016)
CrossRef ADS Google scholar
[23]
C. Bandt and B. Pompe, Permutation entropy: A natural complexity measure for time series, Phys. Rev. Lett. 88(17), 174102 (2002)
CrossRef ADS Google scholar
[24]
U. Parlitz, H. Suetani, and S. Luther, Identification of equivalent dynamics using ordinal pattern distributions, Eur. Phys. J. S.T. 222(2), 553 (2013)
CrossRef ADS Google scholar
[25]
J. M. Amigó, K. Keller, and V. A. Unakafova, Ordinal symbolic analysis and its application to biomedical recordings, Phil. Trans. R. Soc. A 373(2034), 20140091 (2014)
CrossRef ADS Google scholar
[26]
F. Takens, Detecting strange attractors in turbulence, in: D. Rand and L.-S. Young (Eds.), Dynamical Systems and Turbulence, Warwick 1980, Vol. 898 of Lecture Notes in Mathematics, Springer, New York, 1981, pp 366–381
CrossRef ADS Google scholar
[27]
H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, 2nd Ed., Cambridge: Cambridge University Press, 2004
[28]
J. M. Amigó, S. Zambrano, and M. A. F. Sanju’an, True and false forbidden patterns in deterministic and random dynamics, Europhys. Lett. 79(5), 50001 (2007)
CrossRef ADS Google scholar
[29]
J. M. Amigó, S. Zambrano, and M. A. F. Sanju’an, Combinatorial detection of determinism in noisy time series, Europhys. Lett. 83(6), 60005 (2008)
CrossRef ADS Google scholar
[30]
O. A. Rosso, L. C. Carpi, P. M. Saco, M. G. Ravetti, H. A. Larrondo, and A. Plastino, The Amig’o paradigm of forbidden/missing patterns: A detailed analysis, Eur. Phys. J. B 85(12), 419 (2012)
CrossRef ADS Google scholar
[31]
O. A. Rosso, L. C. Carpi, P. M. Saco, M. Gómez Ravetti, A. Plastino, and H. A. Larrondo, Causality and the entropy-complexity plane: Robustness and missing ordinal patterns, Physica A 391(1–2), 42 (2012)
CrossRef ADS Google scholar
[32]
C. W. Kulp and L. Zunino, Discriminating chaotic and stochastic dynamics through the permutation spectrum test, Chaos 24(3), 033116 (2014)
CrossRef ADS Google scholar
[33]
A. Politi, Quantifying the dynamical complexity of chaotic time series, Phys. Rev. Lett. 118(14), 144101 (2017)
CrossRef ADS Google scholar
[34]
J. Zhang, J. Zhou, M. Tang, H. Guo, M. Small, and Y. Zou, Constructing ordinal partition transition networks from multivariate time series, Sci. Rep. 7(1), 7795 (2017)
CrossRef ADS Google scholar
[35]
A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization– A Universal Concept in Nonlinear Sciences, Cambridge University Press, 2001
CrossRef ADS Google scholar
[36]
G. V. Osipov, B. Hu, C. Zhou, M. V. Ivanchenko, and J. Kurths, Three types of transitions to phase synchronization in coupled chaotic oscillators, Phys. Rev. Lett. 91(2), 024101 (2003)
CrossRef ADS Google scholar
[37]
J. Zhang, Y. Z. Yu, and X. G. Wang, Synchronization of coupled metronomes on two layers, Front. Phys. 12(6), 120508 (2017)
CrossRef ADS Google scholar
[38]
H. B. Chen, Y. T. Sun, J. Gao, C. Xu, and Z. G. Zheng, Order parameter analysis of synchronization transitions on star networks, Front. Phys. 12(6), 120504 (2017)
CrossRef ADS Google scholar
[39]
X. Huang, J. Gao, Y. T. Sun, Z. G. Zheng, and C. Xu, Effects of frustration on explosive synchronization, Front. Phys. 11(6), 110504 (2016)
CrossRef ADS Google scholar
[40]
L. M. Ying, J. Zhou, M. Tang, S. G. Guan, and Y. Zou, Mean-field approximations of fixation time distributions of evolutionary game dynamics on graphs, Front. Phys. 13(1), 130201 (2018)
CrossRef ADS Google scholar
[41]
Z. Zheng and G. Hu, Generalized synchronization versus phase synchronization, Phys. Rev. E 62(6), 7882 (2000)
CrossRef ADS Google scholar
[42]
M. C. Romano, M. Thiel, J. Kurths, and W. von Bloh, Multivariate recurrence plots, Phys. Lett. A 330(3–4), 214 (2004)
CrossRef ADS Google scholar
[43]
M. Pecora and T. L. Carroll, Synchronization of chaotic systems, Chaos 25(9), 097611 (2015)
CrossRef ADS Google scholar
[44]
S. Boccaletti, J. Kurths, G. Osipov, D. Valladares, and C. Zhou, The synchronization of chaotic systems,Phys. Rep. 366(1–2), 1 (2002)
CrossRef ADS Google scholar
[45]
M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, From phase to lag synchronization in coupled chaotic oscillators, Phys. Rev. Lett. 78(22), 4193 (1997)
CrossRef ADS Google scholar
[46]
M. G. Rosenblum and A. S. Pikovsky, Detecting direction of coupling in interacting oscillators,Phys. Rev. E 64(4), 045202 (2001)
CrossRef ADS Google scholar
[47]
M. C. Romano, M. Thiel, J. Kurths, and C. Grebogi, Estimation of the direction of the coupling by conditional probabilities of recurrence, Phys. Rev. E 76(3), 036211 (2007)
CrossRef ADS Google scholar
[48]
J. Nawrath, M. C. Romano, M. Thiel, I. Z. Kiss, M. Wickramasinghe, J. Timmer, J. Kurths, and B. Schelter, Distinguishing direct from indirect interactions in oscillatory networks with multiple time scales, Phys. Rev. Lett. 104(3), 038701 (2010)
CrossRef ADS Google scholar
[49]
Y. Zou, M. C. Romano, M. Thiel, N. Marwan, and J. Kurths, Inferring indirect coupling by means of recurrences,Int. J. Bifurcat. Chaos 21(04), 1099 (2011)
CrossRef ADS Google scholar
[50]
A. Groth, Visualization of coupling in time series by order recurrence plots, Phys. Rev. E 72(4), 046220 (2005)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(12303 KB)

Accesses

Citations

Detail

Sections
Recommended

/