All-dielectric bowtie waveguide with deep subwavelength mode confinement

Wen-Cheng Yue, Pei-Jun Yao, Li-Xin Xu, Hai Ming

PDF(2065 KB)
PDF(2065 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (4) : 134207. DOI: 10.1007/s11467-018-0803-1
RESEARCH ARTICLE
RESEARCH ARTICLE

All-dielectric bowtie waveguide with deep subwavelength mode confinement

Author information +
History +

Abstract

Plasmonic waveguides and conventional dielectric waveguides have favorable characteristics in photonic integrated circuits. Typically, plasmonic waveguides can provide subwavelength mode confinement, as shown by their small mode area, whereas conventional dielectric waveguides guide light with low loss, as shown by their long propagation length. However, the simultaneous achievement of subwavelength mode confinement and low-loss propagation remains limited. In this paper, we propose a novel design of an alldielectric bowtie waveguide, which simultaneously exhibits both subwavelength mode confinement and theoretically lossless propagation. Contrary to traditional dielectric waveguides, where the guidance of light is based on total internal reflection, the principle of the all-dielectric bowtie waveguide is based on the combined use of the conservation of the normal component of the electric displacement and the tangential component of the electric field, such that it can achieve a mode area comparable to its plasmonic counterparts. The mode distribution in the all-dielectric bowtie waveguide can be precisely controlled by manipulating the geometric design. Our work shows that it is possible to achieve extreme light confinement by using dielectric instead of lossy metals.

Keywords

dielectric waveguide / nanophotonics / plasmonics / photonic integrated circuits / silicon

Cite this article

Download citation ▾
Wen-Cheng Yue, Pei-Jun Yao, Li-Xin Xu, Hai Ming. All-dielectric bowtie waveguide with deep subwavelength mode confinement. Front. Phys., 2018, 13(4): 134207 https://doi.org/10.1007/s11467-018-0803-1

References

[1]
R. Kirchain and L. Kimerling, A roadmap for nanophotonics, Nat. Photonics 1(6), 303 (2007)
CrossRef ADS Google scholar
[2]
F. Dell’Olio and V. M. Passaro, Optical sensing by optimized silicon slot waveguides, Opt. Express 15(8), 4977 (2007)
CrossRef ADS Google scholar
[3]
K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, Sub-femtojoule alloptical switching using a photonic-crystal nanocavity, Nat. Photonics 4(7), 477 (2010)
CrossRef ADS Google scholar
[4]
T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, Surface-plasmon circuitry, Phys. Today 61(5), 44 (2008)
CrossRef ADS Google scholar
[5]
D. F. Pile and D. K. Gramotnev, Channel plasmon– polariton in a triangular groove on a metal surface, Opt. Lett. 29(10), 1069 (2004)
CrossRef ADS Google scholar
[6]
V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, Ultra-compact silicon nanophotonic modulator with broadband response, Nanophotonics 1(1), 17 (2012)
CrossRef ADS Google scholar
[7]
R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Plasmon lasers at deep subwavelength scale, Nature 461(7264), 629 (2009)
CrossRef ADS Google scholar
[8]
J. N. Caspers, J. S. Aitchison, and M. Mojahedi, Experimental demonstration of an integrated hybrid plasmonic polarization rotator, Opt. Lett. 38(20), 4054 (2013)
CrossRef ADS Google scholar
[9]
A. D. Boardman, Electromagnetic Surface Modes, John Wiley & Sons, 1982
[10]
W. L. Barnes, A. Dereux, and T. W. Ebbesen, Surface plasmon subwavelength optics, Nature 424(6950), 824 (2003)
CrossRef ADS Google scholar
[11]
J. Wang, A review of recent progress in plasmon-assisted nanophotonic devices, Front. Optoelectron. 7(3), 320 (2014)
CrossRef ADS Google scholar
[12]
D. K. Gramotnev and S. I. Bozhevolnyi, Plasmonics beyond the diffraction limit, Nat. Photonics 4(2), 83 (2010)
CrossRef ADS Google scholar
[13]
J. Takahara and T. Kobayashi, Nano-optical waveguides breaking through diffraction limit of light, in: Optics East. International Society for Optics and Photonics, 2004, pp 158–172
CrossRef ADS Google scholar
[14]
S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides, Nat. Mater. 2(4), 229 (2003)
CrossRef ADS Google scholar
[15]
R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, Geometries and materials for subwavelength surface plasmon modes, J. Opt. Soc. Am. A 21(12), 2442 (2004)
CrossRef ADS Google scholar
[16]
J. B. Khurgin, How to deal with the loss in plasmonics and metamaterials, Nat. Nanotechnol. 10(1), 2 (2015)
CrossRef ADS Google scholar
[17]
R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation, Nat. Photonics 2(8), 496 (2008)
CrossRef ADS Google scholar
[18]
D. Dai and S. He, A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement, Opt. Express 17(19), 16646 (2009)
CrossRef ADS Google scholar
[19]
I. Avrutsky, R. Soref, and W. Buchwald, Subwavelength plasmonic modes in a conductor-gapdielectric system with a nanoscale gap, Opt. Express 18(1), 348 (2010)
CrossRef ADS Google scholar
[20]
Y. Bian, Z. Zheng, Y. Liu, J. Zhu, and T. Zhou, Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement, Opt. Express 18(23), 23756 (2010)
CrossRef ADS Google scholar
[21]
Y. Zhao, and L. Zhu, Coaxial hybrid plasmonic nanowire waveguides, J. Opt. Soc. Am. B 27(6), 1260 (2010)
CrossRef ADS Google scholar
[22]
Y. Bian, Z. Zheng, X. Zhao, J. Zhu, and T. Zhou, Symmetric hybrid surface plasmon polariton waveguides for 3d photonic integration, Opt. Express 17(23), 21320 (2009)
CrossRef ADS Google scholar
[23]
L. Chen, T. Zhang, X. Li, and W. Huang, Novel hybrid plasmonic waveguide consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film, Opt. Express 20(18), 20535 (2012)
CrossRef ADS Google scholar
[24]
C. Xiang and J. Wang, Long-range hybrid plasmonic slot waveguide, IEEE Photon. J. 5(2), 4800311 (2013)
CrossRef ADS Google scholar
[25]
Y. Bian, Z. Zheng, Y. Liu, J. Liu, J. Zhu, and T. Zhou, Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deepsubwavelength mode confinement, Opt. Express 19(23), 22417 (2011)
CrossRef ADS Google scholar
[26]
Y. Bian and Q. Gong, Bow-tie hybrid plasmonic waveguides, J. Lightwave Technol. 32(23), 3902 (2014)
[27]
Z. L. Zhang and J. Wang, Long-range hybrid wedge plasmonic waveguide, Sci. Rep. 4, 6870 (2014)
CrossRef ADS Google scholar
[28]
Y. Ma, G. Farrell, Y. Semenova, and Q. Wu, Hybrid nanowedge plasmonic waveguide for low loss propagation with ultra-deep-subwavelength mode confinement, Opt. Lett. 39(4), 973 (2014)
CrossRef ADS Google scholar
[29]
Y. Ma, G. Farrell, Y. Semenova, and Q. Wu, A hybrid wedge-to-wedge plasmonic waveguide with low loss propagation and ultra-deep-nanoscale mode confinement, J. Lightwave Technol. 33(18), 3827 (2015)
CrossRef ADS Google scholar
[30]
A. Boltasseva and H. A. Atwater, Low-loss plasmonic metamaterials, Science 331(6015), 290 (2011)
CrossRef ADS Google scholar
[31]
P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, Realization of an all-dielectric zero-index optical metamaterial, Nat. Photonics 7(10), 791 (2013)
CrossRef ADS Google scholar
[32]
D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, Dielectric gradient metasurface optical elements, Science 345(6194), 298 (2014)
CrossRef ADS Google scholar
[33]
R. Cregan, B. Mangan, J. Knight, T. Birks, P. S. J. Russell, P. Roberts, and D. Allan, Single-mode photonic band gap guidance of light in air, Science 285(5433), 1537 (1999)
CrossRef ADS Google scholar
[34]
G. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. Maier, J. Knight, C. Cruz, and H. Fragnito, Field enhancement within an optical fibre with a subwavelength air core, Nat. Photonics 1(2), 115 (2007)
CrossRef ADS Google scholar
[35]
H. Altug, D. Englund, and J. Vučković, Ultrafast photonic crystal nanocavity laser, Nat. Phys. 2(7), 484 (2006)
[36]
V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, Guiding and confining light in void nanostructure, Opt. Lett. 29(11), 1209 (2004)
CrossRef ADS Google scholar
[37]
Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material, Opt. Lett. 29(14), 1626 (2004)
CrossRef ADS Google scholar
[38]
V. R. Almeida, Q. Xu, R. R. Panepucci, C. A. Barrios, and M. Lipson, Light guiding in low index materials using high-index-contrast waveguides, in: Materials Research Society Symposium Proceedings, Vol. 797, Cambridge University Press, 2003, pp W6–10
CrossRef ADS Google scholar
[39]
P. Müllner and R. Hainberger, Structural optimization of silicon-on-insulator slot waveguides, IEEE Photonics Technol. Lett. 18(24), 2557 (2006)
CrossRef ADS Google scholar
[40]
A. Turner, I. Karube, and G. S. Wilson, Biosensors: Fun-Damentals and Applications, Oxford University Press, 1987
[41]
S. P. Singh and N. Singh, Nonlinear effects in optical fibers: Origin, management and applications, Prog. Electromagnetics Res. 73, 249 (2007)
CrossRef ADS Google scholar
[42]
H. Choi, M. Heuck, and D. Englund, Self-similar nanocavity design with ultrasmall mode volume for single-photon nonlinearities, Phys. Rev. Lett. 118(22), 223605 (2017)
CrossRef ADS Google scholar
[43]
S. Hu and S. M. Weiss, Design of photonic crystal cavities for extreme light concentration, ACS Photonics 3(9), 1647 (2016)
CrossRef ADS Google scholar
[44]
J. N. Reddy, An Introduction to the Finite Element Method, New York: McGraw-Hill, 1993, Vol. 2, No. 2.2
[45]
B. Vohnsen and S. I. Bozhevolnyi, Characterization of near-field optical probes, Appl. Opt. 38(9), 1792 (1999)
CrossRef ADS Google scholar
[46]
Z. Guo, S. Park, J. Yoon, and I. Shin, Recent progress in the development of near-infrared fluorescent probes for bioimaging applications, Chem. Soc. Rev. 43(1), 16 (2014)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(2065 KB)

Accesses

Citations

Detail

Sections
Recommended

/