All-dielectric bowtie waveguide with deep subwavelength mode confinement
Wen-Cheng Yue, Pei-Jun Yao, Li-Xin Xu, Hai Ming
All-dielectric bowtie waveguide with deep subwavelength mode confinement
Plasmonic waveguides and conventional dielectric waveguides have favorable characteristics in photonic integrated circuits. Typically, plasmonic waveguides can provide subwavelength mode confinement, as shown by their small mode area, whereas conventional dielectric waveguides guide light with low loss, as shown by their long propagation length. However, the simultaneous achievement of subwavelength mode confinement and low-loss propagation remains limited. In this paper, we propose a novel design of an alldielectric bowtie waveguide, which simultaneously exhibits both subwavelength mode confinement and theoretically lossless propagation. Contrary to traditional dielectric waveguides, where the guidance of light is based on total internal reflection, the principle of the all-dielectric bowtie waveguide is based on the combined use of the conservation of the normal component of the electric displacement and the tangential component of the electric field, such that it can achieve a mode area comparable to its plasmonic counterparts. The mode distribution in the all-dielectric bowtie waveguide can be precisely controlled by manipulating the geometric design. Our work shows that it is possible to achieve extreme light confinement by using dielectric instead of lossy metals.
dielectric waveguide / nanophotonics / plasmonics / photonic integrated circuits / silicon
[1] |
R. Kirchain and L. Kimerling, A roadmap for nanophotonics, Nat. Photonics 1(6), 303 (2007)
CrossRef
ADS
Google scholar
|
[2] |
F. Dell’Olio and V. M. Passaro, Optical sensing by optimized silicon slot waveguides, Opt. Express 15(8), 4977 (2007)
CrossRef
ADS
Google scholar
|
[3] |
K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, Sub-femtojoule alloptical switching using a photonic-crystal nanocavity, Nat. Photonics 4(7), 477 (2010)
CrossRef
ADS
Google scholar
|
[4] |
T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, Surface-plasmon circuitry, Phys. Today 61(5), 44 (2008)
CrossRef
ADS
Google scholar
|
[5] |
D. F. Pile and D. K. Gramotnev, Channel plasmon– polariton in a triangular groove on a metal surface, Opt. Lett. 29(10), 1069 (2004)
CrossRef
ADS
Google scholar
|
[6] |
V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, Ultra-compact silicon nanophotonic modulator with broadband response, Nanophotonics 1(1), 17 (2012)
CrossRef
ADS
Google scholar
|
[7] |
R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Plasmon lasers at deep subwavelength scale, Nature 461(7264), 629 (2009)
CrossRef
ADS
Google scholar
|
[8] |
J. N. Caspers, J. S. Aitchison, and M. Mojahedi, Experimental demonstration of an integrated hybrid plasmonic polarization rotator, Opt. Lett. 38(20), 4054 (2013)
CrossRef
ADS
Google scholar
|
[9] |
A. D. Boardman, Electromagnetic Surface Modes, John Wiley & Sons, 1982
|
[10] |
W. L. Barnes, A. Dereux, and T. W. Ebbesen, Surface plasmon subwavelength optics, Nature 424(6950), 824 (2003)
CrossRef
ADS
Google scholar
|
[11] |
J. Wang, A review of recent progress in plasmon-assisted nanophotonic devices, Front. Optoelectron. 7(3), 320 (2014)
CrossRef
ADS
Google scholar
|
[12] |
D. K. Gramotnev and S. I. Bozhevolnyi, Plasmonics beyond the diffraction limit, Nat. Photonics 4(2), 83 (2010)
CrossRef
ADS
Google scholar
|
[13] |
J. Takahara and T. Kobayashi, Nano-optical waveguides breaking through diffraction limit of light, in: Optics East. International Society for Optics and Photonics, 2004, pp 158–172
CrossRef
ADS
Google scholar
|
[14] |
S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides, Nat. Mater. 2(4), 229 (2003)
CrossRef
ADS
Google scholar
|
[15] |
R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, Geometries and materials for subwavelength surface plasmon modes, J. Opt. Soc. Am. A 21(12), 2442 (2004)
CrossRef
ADS
Google scholar
|
[16] |
J. B. Khurgin, How to deal with the loss in plasmonics and metamaterials, Nat. Nanotechnol. 10(1), 2 (2015)
CrossRef
ADS
Google scholar
|
[17] |
R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation, Nat. Photonics 2(8), 496 (2008)
CrossRef
ADS
Google scholar
|
[18] |
D. Dai and S. He, A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement, Opt. Express 17(19), 16646 (2009)
CrossRef
ADS
Google scholar
|
[19] |
I. Avrutsky, R. Soref, and W. Buchwald, Subwavelength plasmonic modes in a conductor-gapdielectric system with a nanoscale gap, Opt. Express 18(1), 348 (2010)
CrossRef
ADS
Google scholar
|
[20] |
Y. Bian, Z. Zheng, Y. Liu, J. Zhu, and T. Zhou, Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement, Opt. Express 18(23), 23756 (2010)
CrossRef
ADS
Google scholar
|
[21] |
Y. Zhao, and L. Zhu, Coaxial hybrid plasmonic nanowire waveguides, J. Opt. Soc. Am. B 27(6), 1260 (2010)
CrossRef
ADS
Google scholar
|
[22] |
Y. Bian, Z. Zheng, X. Zhao, J. Zhu, and T. Zhou, Symmetric hybrid surface plasmon polariton waveguides for 3d photonic integration, Opt. Express 17(23), 21320 (2009)
CrossRef
ADS
Google scholar
|
[23] |
L. Chen, T. Zhang, X. Li, and W. Huang, Novel hybrid plasmonic waveguide consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film, Opt. Express 20(18), 20535 (2012)
CrossRef
ADS
Google scholar
|
[24] |
C. Xiang and J. Wang, Long-range hybrid plasmonic slot waveguide, IEEE Photon. J. 5(2), 4800311 (2013)
CrossRef
ADS
Google scholar
|
[25] |
Y. Bian, Z. Zheng, Y. Liu, J. Liu, J. Zhu, and T. Zhou, Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deepsubwavelength mode confinement, Opt. Express 19(23), 22417 (2011)
CrossRef
ADS
Google scholar
|
[26] |
Y. Bian and Q. Gong, Bow-tie hybrid plasmonic waveguides, J. Lightwave Technol. 32(23), 3902 (2014)
|
[27] |
Z. L. Zhang and J. Wang, Long-range hybrid wedge plasmonic waveguide, Sci. Rep. 4, 6870 (2014)
CrossRef
ADS
Google scholar
|
[28] |
Y. Ma, G. Farrell, Y. Semenova, and Q. Wu, Hybrid nanowedge plasmonic waveguide for low loss propagation with ultra-deep-subwavelength mode confinement, Opt. Lett. 39(4), 973 (2014)
CrossRef
ADS
Google scholar
|
[29] |
Y. Ma, G. Farrell, Y. Semenova, and Q. Wu, A hybrid wedge-to-wedge plasmonic waveguide with low loss propagation and ultra-deep-nanoscale mode confinement, J. Lightwave Technol. 33(18), 3827 (2015)
CrossRef
ADS
Google scholar
|
[30] |
A. Boltasseva and H. A. Atwater, Low-loss plasmonic metamaterials, Science 331(6015), 290 (2011)
CrossRef
ADS
Google scholar
|
[31] |
P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, Realization of an all-dielectric zero-index optical metamaterial, Nat. Photonics 7(10), 791 (2013)
CrossRef
ADS
Google scholar
|
[32] |
D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, Dielectric gradient metasurface optical elements, Science 345(6194), 298 (2014)
CrossRef
ADS
Google scholar
|
[33] |
R. Cregan, B. Mangan, J. Knight, T. Birks, P. S. J. Russell, P. Roberts, and D. Allan, Single-mode photonic band gap guidance of light in air, Science 285(5433), 1537 (1999)
CrossRef
ADS
Google scholar
|
[34] |
G. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. Maier, J. Knight, C. Cruz, and H. Fragnito, Field enhancement within an optical fibre with a subwavelength air core, Nat. Photonics 1(2), 115 (2007)
CrossRef
ADS
Google scholar
|
[35] |
H. Altug, D. Englund, and J. Vučković, Ultrafast photonic crystal nanocavity laser, Nat. Phys. 2(7), 484 (2006)
|
[36] |
V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, Guiding and confining light in void nanostructure, Opt. Lett. 29(11), 1209 (2004)
CrossRef
ADS
Google scholar
|
[37] |
Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material, Opt. Lett. 29(14), 1626 (2004)
CrossRef
ADS
Google scholar
|
[38] |
V. R. Almeida, Q. Xu, R. R. Panepucci, C. A. Barrios, and M. Lipson, Light guiding in low index materials using high-index-contrast waveguides, in: Materials Research Society Symposium Proceedings, Vol. 797, Cambridge University Press, 2003, pp W6–10
CrossRef
ADS
Google scholar
|
[39] |
P. Müllner and R. Hainberger, Structural optimization of silicon-on-insulator slot waveguides, IEEE Photonics Technol. Lett. 18(24), 2557 (2006)
CrossRef
ADS
Google scholar
|
[40] |
A. Turner, I. Karube, and G. S. Wilson, Biosensors: Fun-Damentals and Applications, Oxford University Press, 1987
|
[41] |
S. P. Singh and N. Singh, Nonlinear effects in optical fibers: Origin, management and applications, Prog. Electromagnetics Res. 73, 249 (2007)
CrossRef
ADS
Google scholar
|
[42] |
H. Choi, M. Heuck, and D. Englund, Self-similar nanocavity design with ultrasmall mode volume for single-photon nonlinearities, Phys. Rev. Lett. 118(22), 223605 (2017)
CrossRef
ADS
Google scholar
|
[43] |
S. Hu and S. M. Weiss, Design of photonic crystal cavities for extreme light concentration, ACS Photonics 3(9), 1647 (2016)
CrossRef
ADS
Google scholar
|
[44] |
J. N. Reddy, An Introduction to the Finite Element Method, New York: McGraw-Hill, 1993, Vol. 2, No. 2.2
|
[45] |
B. Vohnsen and S. I. Bozhevolnyi, Characterization of near-field optical probes, Appl. Opt. 38(9), 1792 (1999)
CrossRef
ADS
Google scholar
|
[46] |
Z. Guo, S. Park, J. Yoon, and I. Shin, Recent progress in the development of near-infrared fluorescent probes for bioimaging applications, Chem. Soc. Rev. 43(1), 16 (2014)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |