Efimov effect in Dirac semi-metals
Pengfei Zhang, Hui Zhai
Efimov effect in Dirac semi-metals
The Efimov effect is defined as a quantum state with discrete scaling symmetry and a universal scaling factor. It has attracted considerable interests from nuclear to atomic physics communities. In a Dirac semi-metal, when an electron interacts with a static impurity through a Coulombic interaction, the same kinetic scaling and the interaction energy results in the Efimov effect. However, even when the Fermi energy lies exactly at the Dirac point, the vacuum polarization of the electron-hole pair fluctuation can still screen the Coulombic interaction, which leads to deviations from the scaling symmetry and eventually breaks down of the Efimov effect. This energy distortion of the Efimov states due to vacuum polarization is a relativistic electron analogy of the Lamb shift for the hydrogen atom. Motivated by the recent experimental observations in two- and three-dimensional Dirac semi-metals, we herein investigate this many-body correction to the Efimov effect and the conditions that allow some of the Efimov-like quasi-bound states to be observed in these condensed matter experiments.
Dirac semi-metal / Efimov effect / screening
[1] |
V. Efimov, Energy levels arising from resonant two-body forces in a three-body system, Phys. Lett. B 33(8), 563 (1970)
CrossRef
ADS
Google scholar
|
[2] |
T. Kraemer, M. Mark, P. Waldburger, J. G. Danzl, C. Chin, B. Engeser, A. D. Lange, K. Pilch, A. Jaakkola, H. C. Nägerl, and R. Grimm, Evidence for Efimov quantum states in an ultracold gas of caesium atoms, Nature 440(7082), 315 (2006)
CrossRef
ADS
Google scholar
|
[3] |
B. Huang, L. A. Sidorenkov, R. Grimm, and J. M. Hutson, Observation of the second triatomic resonance in Efimov’s scenario, Phys. Rev. Lett. 112(19), 190401 (2014)
CrossRef
ADS
Google scholar
|
[4] |
R. Pires, J. Ulmanis, S. Häfner, M. Repp, A. Arias, E. D. Kuhnle, and M. Weidemüller, Observation of Efimov resonances in a mixture with extreme mass imbalance, Phys. Rev. Lett. 112(25), 250404 (2014)
CrossRef
ADS
Google scholar
|
[5] |
S. K. Tung, K. Jiménez-García, J. Johansen, C. V. Parker, and C. Chin, Geometric scaling of Efimov states in a 6Li-133Cs mixture, Phys. Rev. Lett. 113(24), 240402 (2014)
CrossRef
ADS
Google scholar
|
[6] |
M. Kunitski, S. Zeller, J. Voigtsberger, A. Kalinin, L. P. H. Schmidt, M. Schoffler, A. Czasch, W. Schollkopf, R. E. Grisenti, T. Jahnke, D. Blume, and R. Dorner, Observation of the Efimov state of the helium trimer, Science 348(6234), 551 (2015)
CrossRef
ADS
Google scholar
|
[7] |
S. Deng, Z. Y. Shi, P. Diao, Q. Yu, H. Zhai, R. Qi, and H. Wu, Observation of the Efimovian expansion in scaleinvariant Fermi gases, Science 353(6297), 371 (2016)
CrossRef
ADS
Google scholar
|
[8] |
Z.-Y. Shi, R. Qi, H. Zhai, Z. Yu, Dynamic super Efimov effect,Phys. Rev. A 96, 050702(R) (2017)
|
[9] |
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
CrossRef
ADS
Google scholar
|
[10] |
M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
CrossRef
ADS
Google scholar
|
[11] |
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
CrossRef
ADS
Google scholar
|
[12] |
A. V. Shytov, M. I. Katsnelson, and L. S. Levitov, Atomic collapse and quasi-Rydberg states in graphene, Phys. Rev. Lett. 99(24), 246802 (2007)
CrossRef
ADS
Google scholar
|
[13] |
V. M. Pereira, J. Nilsson, and A. H. C. Neto, Coulomb impurity problem in graphene, Phys. Rev. Lett. 99(16), 166802 (2007)
CrossRef
ADS
Google scholar
|
[14] |
Y. Nishida, Vacuum polarization of graphene with a supercritical Coulomb impurity: Low-energy universality and discrete scale invariance, Phys. Rev. B 90(16), 165414 (2014)
CrossRef
ADS
Google scholar
|
[15] |
Y. Nishida, Renormalization group analysis of graphene with a supercritical Coulomb impurity, Phys. Rev. B 94(8), 085430 (2016)
CrossRef
ADS
Google scholar
|
[16] |
H. Wang, H. Liu, Y. Li, Y. Liu, J. Wang, J. Liu, Y. Wang, L. Li, J. Yan, D. Mandrus, X. C. Xie, and J. Wang, Discrete scale invariance and fermionic Efimov states in ultra-quantum ZrTe5, arXiv: 1704.00995
|
[17] |
O. Ovdat, J. Mao, Y. Jiang, E. Y. Andrei, and E. Akkermans, Observing a scale anomaly and a universal quantum phase transition in graphene, Nat. Commun. 8(1), 507 (2017)
CrossRef
ADS
Google scholar
|
[18] |
A. V. Shytov, M. I. Katsnelson, and L. S. Levitov, Vacuum polarization and screening of supercritical impurities in graphene, Phys. Rev. Lett. 99(23), 236801 (2007)
CrossRef
ADS
Google scholar
|
[19] |
H. Isobe and N. Nagaosa, Theory of a quantum critical phenomenon in a topological insulator: (3+ 1)- dimensional quantum electrodynamics in solids, Phys. Rev. B 86(16), 165127 (2012)
CrossRef
ADS
Google scholar
|
[20] |
S. K. Jian and H. Yao, Correlated double-Weyl semimetals with Coulomb interactions: Possible applications to HgCr2Se4 and SrSi2, Phys. Rev. B 92(4), 045121 (2015)
CrossRef
ADS
Google scholar
|
[21] |
E. Braaten and H. W. Hammer, Universality in fewbody systems with large scattering length, Phys. Rep. 428(5–6), 259 (2006)
CrossRef
ADS
Google scholar
|
[22] |
See Appendix A for detailed derivation.
|
/
〈 | 〉 |