Electronic and optical properties of single-layer MoS2
Hai-Ming Dong , San-Dong Guo , Yi-Feng Duan , Fei Huang , Wen Xu , Jin Zhang
Front. Phys. ›› 2018, Vol. 13 ›› Issue (4) : 137307
Electronic and optical properties of single-layer MoS2
The electronic structures of a MoS2 monolayer are investigated with the all-electron first principle calculations based on the density functional theory (DFT) and the spin-orbital couplings (SOCs). Our results show that the monolayer MoS2 is a direct band gap semiconductor with a band gap of 1.8 eV. The SOCs and d-electrons in Mo play a very significant role in deciding its electronic and optical properties. Moreover, electronic elementary excitations are studied theoretically within the diagrammatic self-consistent field theory. Under random phase approximation, it shows that two branches of plasmon modes can be achieved via the conduction-band transitions due to the SOCs, which are different from the plasmons in a two-dimensional electron gas and graphene owing to the quasi-linear energy dispersion in single-layer MoS2. Moreover, the strong optical absorption up to 105 cm−1 and two optical absorption edges I and II can be observed. This study is relevant to the applications of monolayer MoS2 as an advanced photoelectronic device.
MoS 2 / electronic and optical properties
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
/
| 〈 |
|
〉 |