Electronic and optical properties of single-layer MoS2

Hai-Ming Dong, San-Dong Guo, Yi-Feng Duan, Fei Huang, Wen Xu, Jin Zhang

PDF(884 KB)
PDF(884 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (4) : 137307. DOI: 10.1007/s11467-018-0797-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Electronic and optical properties of single-layer MoS2

Author information +
History +

Abstract

The electronic structures of a MoS2 monolayer are investigated with the all-electron first principle calculations based on the density functional theory (DFT) and the spin-orbital couplings (SOCs). Our results show that the monolayer MoS2 is a direct band gap semiconductor with a band gap of 1.8 eV. The SOCs and d-electrons in Mo play a very significant role in deciding its electronic and optical properties. Moreover, electronic elementary excitations are studied theoretically within the diagrammatic self-consistent field theory. Under random phase approximation, it shows that two branches of plasmon modes can be achieved via the conduction-band transitions due to the SOCs, which are different from the plasmons in a two-dimensional electron gas and graphene owing to the quasi-linear energy dispersion in single-layer MoS2. Moreover, the strong optical absorption up to 105 cm−1 and two optical absorption edges I and II can be observed. This study is relevant to the applications of monolayer MoS2 as an advanced photoelectronic device.

Keywords

MoS2 / electronic and optical properties

Cite this article

Download citation ▾
Hai-Ming Dong, San-Dong Guo, Yi-Feng Duan, Fei Huang, Wen Xu, Jin Zhang. Electronic and optical properties of single-layer MoS2. Front. Phys., 2018, 13(4): 137307 https://doi.org/10.1007/s11467-018-0797-8

References

[1]
A. H. Castro Neto and K. Novoselov, New directions in science and technology: Two-dimensional crystals, Rep. Prog. Phys. 74, 082501 (2011)
CrossRef ADS Google scholar
[2]
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol. 6(3), 147 (2011)
CrossRef ADS Google scholar
[3]
B. Radisavljevic, M. B. Whitwick, and A. Kis, Integrated circuits and logic operations based on single-layer MoS2, ACS Nano 5(12), 9934 (2011)
CrossRef ADS Google scholar
[4]
Z. Y. Yin, H. Li, H. Li, L. Jiang, Y. M. Shi, Y. H. Sun, G. Lu, Q. Zhang, X. D. Chen, and H. Zhang, Singlelayer MoS2 phototransistors,ACS Nano 6(1), 74 (2012)
CrossRef ADS Google scholar
[5]
K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105, 136805 (2010)
CrossRef ADS Google scholar
[6]
H. S. Lee, S. W. Min, Y. G. Chang, M. K. Park, T. Nam, H. Kim, H. Kim Jae, and S. Ryu, MoS2 nanosheet phototransistors with thickness-modulated optical energy gap, Nano Lett. 12(7), 3695 (2012)
CrossRef ADS Google scholar
[7]
T. Cao, G. Wang, W. P. Han, H. Q. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, Valleyselective circular dichroism of monolayer molybdenum disulphide, Nat. Commun. 3(1), 887 (2012)
CrossRef ADS Google scholar
[8]
B. Radisavljevic, M. B. Whitwick, and A. Kis, Smallsignal amplifier based on single-layer MoS2, Appl. Phys. Lett. 101, 043103 (2012)
CrossRef ADS Google scholar
[9]
T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, and C. Schüller, Low-temperature photocarrier dynamics in monolayer MoS2, Appl. Phys. Lett. 99(10), 102109 (2011)
CrossRef ADS Google scholar
[10]
D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides, Phys. Rev. Lett. 108(19), 196802 (2012)
CrossRef ADS Google scholar
[11]
P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented PlaneWave+ Local Orbitals Program for Calculating Crystal Properties, Karlheinz Schwarz Technische University Wien, Austria, 2001
[12]
D. D. Koelling and B. N. Harmon, A technique for relativistic spin-polarised calculations, J. Phys. C 10(16), 3107 (1977)
CrossRef ADS Google scholar
[13]
H. M. Dong, L. L. Li, W. Y. Wang, S. H. Zhang, C. X. Zhao, and W. Xu, Terahertz plasmon and infrared coupled plasmon–phonon modes in graphene, Physica E 44(9), 1889 (2012)
CrossRef ADS Google scholar
[14]
A. Scholz, T. Stauber, and J. Schliemann, Plasmons and screening in a monolayer of MoS2, Phys. Rev. B 88(3), 035135 (2013)
CrossRef ADS Google scholar
[15]
X. Li, J. T. Mullen, Z. Jin, K. M. Borysenko, M. Buongiorno Nardelli, and K. W. Kim, Intrinsic electrical transport properties of monolayer silicene and MoS2 from first principles, Phys. Rev. B 87(11), 115418 (2013)
CrossRef ADS Google scholar
[16]
S. Kumar and U. Schwingenschlögl, Thermoelectric response of bulk and monolayer MoSe2 and WSe2, Chem. Mater. 27(4), 1278 (2015)
CrossRef ADS Google scholar
[17]
Y. Ding, Y. L. Wang, J. Ni, L. Shi, S. Q. Shi, and W. H. Tang, First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers, Physica B 406(11), 2254 (2011)
CrossRef ADS Google scholar
[18]
A. Kormányos, V. Zólyomi, N. D. Drummond, P. Rakyta, G. Burkard, and V. I. Fal’ko, Monolayer MoS2: Trigonal warping, the Γ valley, and spin-orbit coupling effects, Phys. Rev. B 88, 045416 (2013)
CrossRef ADS Google scholar
[19]
E. S. Kadantsev and P. Hawrylak, Electronic structure of a single MoS2 monolayer, Solid State Commun. 152(10), 909 (2012)
CrossRef ADS Google scholar
[20]
Q. Luan, C. L. Yang, M. S. Wang, and X. G. Ma, Firstprinciples study on the electronic and optical properties of WS2 and MoS2 monolayers, Chin. J. Phys. 55(5), 1930 (2017)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(884 KB)

Accesses

Citations

Detail

Sections
Recommended

/