Tunable electronic structure and magnetic coupling in strained two-dimensional semiconductor MnPSe3

Qi Pei, Xiao-Cha Wang, Ji-Jun Zou, Wen-Bo Mi

PDF(20403 KB)
PDF(20403 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (4) : 137105. DOI: 10.1007/s11467-018-0796-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Tunable electronic structure and magnetic coupling in strained two-dimensional semiconductor MnPSe3

Author information +
History +

Abstract

The electronic structures and magnetic properties of strained monolayer MnPSe3 are investigated systematically via first-principles calculations. It is found that the magnetic ground state of monolayer MnPSe3 can be significantly affected by biaxial strain engineering, while the semiconducting characteristics are well-preserved. Owing to the sensitivity of the magnetic coupling towards structural deformation, a biaxial tensile strain of approximately 13% can lead to an antiferromagnetic (AFM)- ferromagnetic (FM) transition. The strain-dependent magnetic stability is mainly attributed to the competition of the direct AFM interaction and indirect FM superexchange interaction between the two nearest-neighbor Mn atoms. In addition, we find that FM MnPSe3 is an intrinsic half semiconductor with large spin exchange splitting in the conduction bands, which is crucial for the spin-polarized carrier injection and detection. The sensitive interdependence among the external stimuli, electronic structure, and magnetic coupling makes monolayer MnPSe3 a promising candidate for spintronics.

Keywords

two-dimensional semiconductor / MnPSe3 / strain engineering / electronic structure / magnetic coupling

Cite this article

Download citation ▾
Qi Pei, Xiao-Cha Wang, Ji-Jun Zou, Wen-Bo Mi. Tunable electronic structure and magnetic coupling in strained two-dimensional semiconductor MnPSe3. Front. Phys., 2018, 13(4): 137105 https://doi.org/10.1007/s11467-018-0796-9

References

[1]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
CrossRef ADS Google scholar
[2]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)
CrossRef ADS Google scholar
[3]
Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)
CrossRef ADS Google scholar
[4]
A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6(3), 183 (2007)
CrossRef ADS Google scholar
[5]
F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, Structural defects in graphene, ACS Nano 5(1), 26 (2011)
CrossRef ADS Google scholar
[6]
H. Pan, J. B. Yi, L. Shen, R. Q. Wu, J. H. Yang, J. Y. Lin, Y. P. Feng, J. Ding, L. H. Van, and J. H. Yin, Room-temperature ferromagnetism in carbondoped ZnO, Phys. Rev. Lett. 99(12), 127201 (2007)
CrossRef ADS Google scholar
[7]
C. Cao, M. Wu, J. Jiang, and H. P. Cheng, Transition metal adatom and dimer adsorbed on graphene: Induced magnetization and electronic structures, Phys. Rev. B 81(20), 205424 (2010)
CrossRef ADS Google scholar
[8]
M. Naguib, V. N. Mochalin, M. W. Barsoum, and Y. Gogotsi, MXenes: A new family of two-dimensional materials, Adv. Mater. 26(7), 992 (2014)
CrossRef ADS Google scholar
[9]
S. Lebègue, T. Björkman, M. Klintenberg, R. M. Nieminen, and O. Eriksson, Two-dimensional materials from data filtering and ab initio calculations, Phys. Rev. X 3(3), 031002 (2013)
CrossRef ADS Google scholar
[10]
X. Li and J. Yang, CrXTe3 (X=Si, Ge) nanosheets: Two dimensional intrinsic ferromagnetic semiconductors, J. Mater. Chem. C Mater. Opt. Electron. Devices 2(34), 7071 (2014)
CrossRef ADS Google scholar
[11]
M. W. Lin, H. L. Zhuang, J. Yan, T. Z. Ward, A. A. Puretzky, C. M. Rouleau, Z. Gai, L. Liang, V. Meunier, B. G. Sumpter, P. Ganesh, P. R. C. Kent, D. B. Geohegan, D. G. Mandrus, and K. Xiao, Ultrathin nanosheets of CrSiTe3: A semiconducting two-dimensional ferromagnetic material, J. Mater. Chem. C 4(2), 315 (2016)
CrossRef ADS Google scholar
[12]
Y. Ma, Y. Dai, M. Guo, C. Niu, Y. Zhu, and B. Huang, Evidence of the existence of magnetism in pristine VX2 monolayers (X= S, Se) and their strain-induced tunable magnetic properties, ACS Nano 6(2), 1695 (2012)
CrossRef ADS Google scholar
[13]
W. B. Zhang, Q. Qu, P. Zhu, and C. H. Lam, Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides, J. Mater. Chem. C 3(48), 12457 (2015)
CrossRef ADS Google scholar
[14]
X. X. Li, X. J. Wu, and J. L. Yang, Half-metallicity in MnPSe3 exfoliated nanosheet with carrier doping, J. Am. Chem. Soc. 136(31), 11065 (2014)
CrossRef ADS Google scholar
[15]
X. Zhang, X. Zhao, D. Wu, Y. Jing, and Z. Zhou, MnPSe3 monolayer: a promising 2D visible-light photohydrolytic catalyst with high carrier mobility, Adv. Sci. 3(10), 1600062 (2016)
CrossRef ADS Google scholar
[16]
B. L. Chittari, Y. Park, D. Lee, M. Han, A. H. Mac-Donald, E. Hwang, and J. Jung, Electronic and magnetic properties of single-layer MPX3 metal phosphorous trichalcogenides, Phys. Rev. B 94(18), 184428 (2016)
CrossRef ADS Google scholar
[17]
X. Li, T. Cao, Q. Niu, J. Shi, and J. Feng, Coupling the valley degree of freedom to antiferromagnetic order, Proc. Natl. Acad. Sci. USA 110(10), 3738 (2013)
CrossRef ADS Google scholar
[18]
Q. Pei, Y. Song, X. Wang, J. Zou, and W. Mi, Superior electronic structure in two-dimensional MnPSe3/MoS2 van der Waals heterostructures, Sci. Rep. 7(1), 9504 (2017)
CrossRef ADS Google scholar
[19]
K. F. Mak, C. H. Lui, J. Shan, and T. F. Heinz, Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy, Phys. Rev. Lett. 102(25), 256405 (2009)
CrossRef ADS Google scholar
[20]
Y. Zhou, Z. Wang, P. Yang, X. Zu, L. Yang, X. Sun, and F. Gao, Tensile strain switched ferromagnetism in layered NbS2 and NbSe2, ACS Nano 6(11), 9727 (2012)
CrossRef ADS Google scholar
[21]
Y. C. Cheng, Q. Y. Zhang, and U. Schwingenschlögl, Valley polarization in magnetically doped single-layer transition-metal dichalcogenides, Phys. Rev. B 89(15), 155429 (2014)
CrossRef ADS Google scholar
[22]
K. Sawada, F. Ishii, M. Saito, S. Okada, and T. Kawai, Phase control of graphene nanoribbon by carrier doping: Appearance of noncollinear magnetism, Nano Lett. 9(1), 269 (2009)
CrossRef ADS Google scholar
[23]
F. Li and Z. Chen, Tuning electronic and magnetic properties of MoO3 sheets by cutting, hydrogenation, and external strain: A computational investigation, Nanoscale 5(12), 5321 (2013)
CrossRef ADS Google scholar
[24]
H. H. Pérez-Garza, E. W. Kievit, G. F. Schneider, and U. Staufer, Highly strained graphene samples of varying thickness and comparison of their behavior, Nanotechnology 25(46), 465708 (2014)
CrossRef ADS Google scholar
[25]
S. Bertolazzi, J. Brivio, and A. Kis, Stretching and breaking of ultrathin MoS2, ACS Nano 5(12), 9703 (2011)
CrossRef ADS Google scholar
[26]
X. Chen, J. Qi, and D. Shi, Strain-engineering of magnetic coupling in two-dimensional magnetic semiconductor CrSiTe3: competition of direct exchange interaction and superexchange interaction, Phys. Lett. A 379(1–2), 60 (2015)
CrossRef ADS Google scholar
[27]
Y. Ma, Y. Dai, M. Guo, C. Niu, L. Yu, and B. Huang, Strain-induced magnetic transitions in half-fluorinated single layers of BN, GaN and graphene, Nanoscale 3(5), 2301 (2011)
CrossRef ADS Google scholar
[28]
L. Kou, C. Tang, W. Guo, and C. Chen, Tunable magnetism in strained graphene with topological line defect, ACS Nano 5(2), 1012 (2011)
CrossRef ADS Google scholar
[29]
F. Ding, H. Ji, Y. Chen, A. Herklotz, K. Dörr, Y. Mei, A. Rastelli, and O. G. Schmidt, Stretchable graphene: A close look at fundamental parameters through biaxial straining, Nano Lett. 10(9), 3453 (2010)
CrossRef ADS Google scholar
[30]
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initiototal-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef ADS Google scholar
[31]
G. Kresse and J. Furthmüller, Efficiency of ab-initiototal energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
CrossRef ADS Google scholar
[32]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[33]
S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+Ustudy, Phys. Rev. B 57(3), 1505 (1998)
CrossRef ADS Google scholar
[34]
S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27(15), 1787 (2006)
CrossRef ADS Google scholar
[35]
V. Grasso and L. Silipigni, Optical absorption and reflectivity study of the layered MnPSe3 seleniophosphate, J. Opt. Soc. Am. B 16(1), 132 (1999)
CrossRef ADS Google scholar
[36]
A. Wiedenmann, J. Rossat-Mignod, A. Louisy, R. Brec, and J. Rouxel, Neutron diffraction study of the layered compounds MnPSe3 and FePSe3, Solid State Commun. 40(12), 1067 (1981)
CrossRef ADS Google scholar
[37]
T. Zhu and J. Li, Ultra-strength materials, Prog. Mater. Sci. 55(7), 710 (2010)
CrossRef ADS Google scholar
[38]
A. R. Wildes, B. Roessli, B. Lebech, and K. W. Godfrey, Spin waves and the critical behaviour of the magnetization in., J. Phys.: Condens. Matter 10(28), 6417 (1998)
CrossRef ADS Google scholar
[39]
K. Okuda, K. Kurosawa, S. Saito, M. Honda, Z. Yu, and M. Date, Magnetic properties of layered compound MnPS3, J. Phys. Soc. Jpn. 55(12), 4456 (1986)
CrossRef ADS Google scholar
[40]
N. Sivadas, M. W. Daniels, R. H. Swendsen, S. Okamoto, and D. Xiao, Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers, Phys. Rev. B 91(23), 235425 (2015)
CrossRef ADS Google scholar
[41]
J. B. Goodenough, Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3, Phys. Rev. 100(2), 564 (1955)
CrossRef ADS Google scholar
[42]
J. Kanamori, Crystal distortion in magnetic compounds, J. Appl. Phys. 31(5), S14 (1960)
CrossRef ADS Google scholar
[43]
M. A. Subramanian, A. P. Ramirez, and W. J. Marshall, Structural tuning of ferromagnetism in a 3D cuprate perovskite, Phys. Rev. Lett. 82(7), 1558 (1999)
CrossRef ADS Google scholar
[44]
W. B. Zhang, Q. Qu, P. Zhu, and C. H. Lam, Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides, J. Mater. Chem. C 3(48), 12457 (2015)
CrossRef ADS Google scholar
[45]
M. Joe, H. Lee, M. M. Alyörük, J. Lee, S. Y. Kim, C. Lee, and J. H. Lee, A comprehensive study of piezomagnetic response in CrPS4 monolayer: Mechanical, electronic properties and magnetic ordering under strains, J. Phys.: Condens. Matter 29(40), 405801 (2017)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(20403 KB)

Accesses

Citations

Detail

Sections
Recommended

/