Geometric field theory and weak Euler–Lagrange equation for classical relativistic particle-field systems

Peifeng Fan , Hong Qin , Jian Liu , Nong Xiang , Zhi Yu

Front. Phys. ›› 2018, Vol. 13 ›› Issue (4) : 135203

PDF (192KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (4) : 135203 DOI: 10.1007/s11467-018-0793-z
RESEARCH ARTICLE

Geometric field theory and weak Euler–Lagrange equation for classical relativistic particle-field systems

Author information +
History +
PDF (192KB)

Abstract

A manifestly covariant, or geometric, field theory of relativistic classical particle-field systems is developed. The connection between the space-time symmetry and energy-momentum conservation laws of the system is established geometrically without splitting the space and time coordinates; i.e., spacetime is treated as one entity without choosing a coordinate system. To achieve this goal, we need to overcome two difficulties. The first difficulty arises from the fact that the particles and the field reside on different manifolds. As a result, the geometric Lagrangian density of the system is a function of the 4-potential of the electromagnetic fields and also a functional of the particles’ world lines. The other difficulty associated with the geometric setting results from the mass-shell constraint. The standard Euler–Lagrange (EL) equation for a particle is generalized into the geometric EL equation when the mass-shell constraint is imposed. For the particle-field system, the geometric EL equation is further generalized into a weak geometric EL equation for particles. With the EL equation for the field and the geometric weak EL equation for particles, the symmetries and conservation laws can be established geometrically. A geometric expression for the particle energy-momentum tensor is derived for the first time, which recovers the non-geometric form in the literature for a chosen coordinate system.

Keywords

relativistic particle-field system / different manifolds / mass-shell constraint / geometric weak Euler–Lagrange equation / symmetry / conservation laws

Cite this article

Download citation ▾
Peifeng Fan, Hong Qin, Jian Liu, Nong Xiang, Zhi Yu. Geometric field theory and weak Euler–Lagrange equation for classical relativistic particle-field systems. Front. Phys., 2018, 13(4): 135203 DOI:10.1007/s11467-018-0793-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

E. Noether, Invariante Variationsprobleme, Nachr. König. Gesell. Wiss. Göttingen, Math.-Phys. Kl. 235–257 (1918); also available in English at Transport Theory Statist. Phys. 1, 186–207 (1971)

[2]

P. J. Olver, Applications of Lie Groups to Differential Equations, New York: Springer-Verlag, 1993, pp 242–283

[3]

C. Markakis, K. Uryū, E. Gourgoulhon, J. P. Nicolas, N. Andersson, A. Pouri, and V. Witzany, Conservation laws and evolution schemes in geodesic, hydrodynamic, and magnetohydrodynamic flows, Phys. Rev. D 96(6), 064019 (2017)

[4]

R. M. Wald, General Relativity, Chicago and London: The University of Chicago Press, 1984, pp 23–27

[5]

H. Qin, R. H. Cohen, W. M. Nevins, and X. Q. Xu, Geometric gyrokinetic theory for edge plasmas, Phys. Plasmas 14(5), 056110 (2007)

[6]

L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, Oxford: Butterworth-Heinemann, 1975, pp 46–89

[7]

T. D. Brennan and S. E. Gralla, On the magnetosphere of an accelerated pulsar, Phys. Rev. D 89(10), 103013 (2014)

[8]

F. Carrasco and O. Reula, Covariant hyperbolization of force-free electrodynamics, Phys. Rev. D 93(8), 085013 (2016)

[9]

J. Yu, Q. Ma, V. Motto-Ros, W. Lei, X. Wang, and X. Bai, Generation and expansion of laser-induced plasma as a spectroscopic emission source, Front. Phys. 7(6), 649 (2012)

[10]

Z. H. Hu, M. D. Chen, and Y. N. Wang, Current neutralization and plasma polarization for intense ion beams propagating through magnetized background plasmas in a two-dimensional slab approximation, Front. Phys. 9(2), 226 (2014)

[11]

J. Zhu, K. Zhu, L. Tao, X. Xu, C. Lin, W. Ma, H. Lu, Y. Zhao, Y. Lu, J. Chen, and X. Yan, Distribution uniformity of laser-accelerated proton beams, Chin. Phys. C 41(9), 097001 (2017)

[12]

M. Fathi, A dynamical approach to the exterior geometry of a perfect fluid as a relativistic star, Chin. Phys. C 37(2), 025101 (2013)

[13]

H. Qin, J. W. Burby, and R. C. Davidson, Field theory and weak Euler-Lagrange equation for classical particlefield systems, Phys. Rev. E 90(4), 043102 (2014)

[14]

L. Infeld, Bull. Acad. Pol. Sci. 5, 491 (1957); also available in the book: Asim O. Barut, Electrodynamics and Classical Theory of Fields & Particles, New York: Dover Publication, INC, 1980, pp 65–66

[15]

R. Hakim, Remarks on relativistic statistical mechanics (I), J. Math. Phys. 8(6), 1315 (1967)

[16]

R. Hakim, Remarks on relativistic statistical mechanics (II): Hierarchies for the Reduced Densities, J. Math. Phys. 8(7), 1379 (1967)

[17]

M. Gedalin, Covariant relativistic hydrodynamics of multispecies plasma and generalized Ohm’s law, Phys. Rev. Lett. 76(18), 3340 (1996)

[18]

G. Hornig, The covariant transport of electromagnetic fields and its relation to magnetohydrodynamics, Phys. Plasmas 4(3), 646 (1997)

[19]

K. C. Baral and J. N. Mohanty, Covariant formulation of the Fokker–Planck equation for moderately coupled relativistic magnetoplasma, Phys. Plasmas 7(4), 1103 (2000)

[20]

C. Tian, Manifestly covariant classical correlation dynamics (I): General theory, Ann. Phys. 18(10–11), 783 (2009)

[21]

C. Tian, Manifestly covariant classical correlation dynamics (II): Transport equations and Hakim equilibrium conjecture, Ann. Phys. 19(1–2), 75 (2010)

[22]

E. D’Avignon, P. J. Morrison, and F. Pegoraro, Action principle for relativistic magnetohydrodynamics, Phys. Rev. D 91(8), 084050 (2015)

[23]

S. Yang and X. Wang, On Lorentz invariants in relativistic magnetic reconnection, Phys. Plasmas 23(8), 082903 (2016)

[24]

Y. Wang, J. Liu, and H. Qin, Lorentz covariant canonical symplectic algorithms for dynamics of charged particles, Phys. Plasmas 23(12), 122513 (2016)

[25]

Y. Shi, N. J. Fisch, and H. Qin, Effective-action approach to wave propagation in scalar QED plasmas, Phys. Rev. A 94(1), 012124 (2016)

[26]

D. D. Holm, J. E. Marsden, and T. S. Ratiu, The Euler–Poincaré equations and semidirect products with applications to continuum theories, Adv. Math. 137(1), 1 (1998)

[27]

J. Squire, H. Qin, W. M. Tang, and C. Chandre, The Hamiltonian structure and Euler-Poincaré formulation of the Vlasov-Maxwell and gyrokinetic systems, Phys. Plasmas 20(2), 022501 (2013)

[28]

Y. Zhou, H. Qin, J. W. Burby, and A. Bhattacharjee, Variational integration for ideal magnetohydrodynamics with built-in advection equations, Phys. Plasmas 21(10), 102109 (2014)

[29]

Z. Zhou, Y. He, Y. Sun, J. Liu, and H. Qin, Explicit symplectic methods for solving charged particle trajectories, Phys. Plasmas 24(5), 052507 (2017)

[30]

J. Squire, H. Qin, and W. M. Tang, Gauge properties of the guiding center variational symplectic integrator, Phys. Plasmas 19(5), 052501 (2012)

[31]

J. Xiao, H. Qin, J. Liu, Y. He, R. Zhang, and Y. Sun, Explicit high-order non-canonical symplectic particlein- cell algorithms for Vlasov-Maxwell systems, Phys. Plasmas 22(11), 112504 (2015)

[32]

H. Qin, J. Liu, J. Xiao, R. Zhang, Y. He, Y. Wang, Y. Sun, J. W. Burby, L. Ellison, and Y. Zhou, Canonical symplectic particle-in-cell method for long-term large-scale simulations of the Vlasov–Maxwell equations, Nucl. Fusion 56(1), 014001 (2016)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (192KB)

1091

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/